Patents by Inventor Patrick Yin

Patrick Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160313863
    Abstract: A differential sensing scheme provides a means for detecting one or more touch events on a touch sensitive device in the presence of incident noise. Instead of sensing one touch sensitive channel, such as a row, column, or single touch sensor, multiple touch sensitive channels are sampled at a time. By sampling two nearby channels simultaneously and doing the measurement differentially, noise common to both channels is cancelled. The differential sensing scheme is implemented using simple switch-capacitor AFE circuitry. The originally sensed data on each individual channel is recovered free of common-mode noise. The recovered sensed data is used to determine the presence of one or more touch events and if present the location of each touch event on the touch sensitive device.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: Ashutosh Ravindra Joharapurkar, Jean CauXuan Le, Natarajan Viswanathan, Patrick Yin Chan
  • Publication number: 20160291797
    Abstract: Random sampling techniques include techniques for reducing or eliminating errors in the output of capacitive sensor arrays such as touch panels. The channels of the touch panel are periodically sampled to determine the presence of one or more touch events. Each channel is individually sampled in a round robin fashion, referred to as a sampling cycle. During each sampling cycle, all channels are sampled once. Multiple sampling cycles are performed such that each channel is sampled multiple times. Random sampling techniques are used to sample each of the channels. One random sampling technique randomizes a starting channel in each sampling cycle. Another random sampling technique randomizes the selection of all channels in each sampling cycle. Yet another random sampling technique randomizes the sampling cycle delay period between each sampling cycle. Still another random sampling technique randomizes the channel delay period between sampling each channel.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 6, 2016
    Inventors: Ashutosh Ravindra Joharapurkar, Patrick Yin Chan, David Allen, Natarajan Viswanathan
  • Patent number: 9443050
    Abstract: Electronic design automation (EDA) technologies are disclosed that analyze a circuit design for candidate low-voltage swing (LVS) modifications, report the impact of the candidate LVS modifications on circuit characteristics (such as area, timing and energy) and implement selected LVS modifications based on their impact on the circuit characteristics. Candidate LVS modifications comprise replacing existing standard low-voltage swing drivers and receivers, or inserting low-voltage swing drivers and receivers.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: September 13, 2016
    Assignee: Oregon State University
    Inventors: Jacob Postman, Patrick Yin Chiang
  • Patent number: 9219599
    Abstract: A clock and data recovery (CDR) circuit employing zero-crossing linearizing (ZCL) technique. The circuit including a voltage controlled oscillator (VCO), an inject-locked divider (ILD), a variable delay unit, a linearized loop, a bang-bang loop, and a loop filter (LP). The differential clock generated by VCO passes through ILD for frequency dividing and variable delay unit to generate 8-phase clocks. Then using these clocks, the PDs over-sample the input data, followed by synchronization and logic operation to control the CPs output current pulses. These currents filtered by LP control the VCO to finish the loop. The circuit recovers 4 channel data and corresponding clocks of the input with low power broken-down and preferable jitter performance and locking property.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: December 22, 2015
    Assignee: FUDAN UNIVERSITY
    Inventors: Zhongkai Wang, Rui Bai, Patrick Yin Chiang
  • Publication number: 20150180644
    Abstract: A clock and data recovery (CDR) circuit employing zero-crossing linearizing (ZCL) technique. The circuit including a voltage controlled oscillator (VCO), an inject-locked divider (ILD), a variable delay unit, a linearized loop, a bang-bang loop, and a loop filter (LP). The differential clock generated by VCO passes through ILD for frequency dividing and variable delay unit to generate 8-phase clocks. Then using these clocks, the PDs over-sample the input data, followed by synchronization and logic operation to control the CPs output current pulses. These currents filtered by LP control the VCO to finish the loop. The circuit recovers 4 channel data and corresponding clocks of the input with low power broken-down and preferable jitter performance and locking property.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 25, 2015
    Inventors: Zhongkai WANG, Rui BAI, Patrick Yin CHIANG
  • Publication number: 20140040843
    Abstract: Electronic design automation (EDA) technologies are disclosed that analyze a circuit design for candidate low-voltage swing (LVS) modifications, report the impact of the candidate LVS modifications on circuit characteristics (such as area, timing and energy) and implement selected LVS modifications based on their impact on the circuit characteristics. Candidate LVS modifications comprise replacing existing standard low-voltage swing drivers and receivers, or inserting low-voltage swing drivers and receivers.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 6, 2014
    Applicant: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Stat
    Inventors: Jacob Postman, Patrick Yin Chiang
  • Patent number: 8487795
    Abstract: A time-interleaved track-and-hold circuit includes a clock generator adapted to receive a global sine-wave clock signal and to generate therefrom multiple square-wave output clock signals of different phases. The track-and-hold circuit includes a switching array operative in at least a track mode or a hold mode. The switching array includes multiple switch circuits, each switch circuit adapted to receive an analog input signal, a corresponding one of the output clock signals, and the global sine-wave clock signal. Each switch circuit is operative to utilize the corresponding one of the output clock signals during the track mode for tracking the analog input signal, and is operative during the hold mode to store the input signal sampled during the track mode as an output of the switch circuit and to utilize the global sine-wave clock signal during the hold mode for synchronizing sampling instants of the respective outputs of the switch circuits.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: July 16, 2013
    Assignees: LSI Corporation, Oregon State University
    Inventors: Tao Jiang, Patrick Yin Chiang, Freeman Y. Zhong
  • Publication number: 20130035881
    Abstract: A system for characterizing interruption defect induced efficiency loss in a photovoltaic cell includes an inspection system configured to acquire inspection data from a photovoltaic cell, a control system configured to: receive the inspection data acquired from the photovoltaic cell, identify one or more interruption defects in one or more fingers of an electrode of the one photovoltaic cell utilizing the inspection data, determine a spatial parameter associated with at least one of the identified interruption defects and one or more floating finger portions of the one or more fingers created by two or more identified interruption defects, determine an interruption-defect-induced efficiency loss of the photovoltaic cell based on the determined spatial parameter associated with the at least one of the identified interruption defects and the floating finger portions of the one or more fingers created by two or more identified interruption defects.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 7, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Choon (George) Hoong Hoo, Patrick Tung-Sing Pak, Choon Wai Chang, Kristiaan Van Rossen, Johan DeGreeve, Lieve Govaerts, Jia-Jie Patrick Yin
  • Patent number: 6298469
    Abstract: A system and method is provided which generates integrated circuits for integrated circuits that are portable from process to process. Information generated from an integrated circuit manufactured on a first process is utilized in combination with the parameters of a subsequent manufacturing process to obtain an integrated circuit based upon that second manufacturing process. Through this system and method a particular integrated circuit design is portable from process to process.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: October 2, 2001
    Assignee: Aspec Technology, Inc.
    Inventor: Patrick Yin
  • Patent number: 5723992
    Abstract: An improved output driver circuit is disclosed which can be utilized when a plurality of voltage potentials are present. The output driver circuit comprises a first pull-up transistor coupled to a first voltage potential, a second pull-down transistor coupled to a second voltage potential, and a pad member coupled to the first pull-up and second pull-down transistor. The driver circuit further includes a circuit means which is coupled to the pad member and the first pull-up transistor. Accordingly, through this arrangement, the circuit substantially reduces the leakage through the first pull-up transistor when the pad member is coupled to a third voltage potential. An output driver circuit in accordance with the present invention, can be utilized in an integrated circuit environment where multiple voltages such as 3.3 volts and 5 volts are present and the output driver circuit will operate effectively because the leakage path normally associated with such circuits is substantially minimized.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: March 3, 1998
    Assignee: Aspec Technology, Inc.
    Inventors: Patrick Yin, Craig S. Thrower
  • Patent number: 5701021
    Abstract: A cell architecture for mixed signal applications is disclosed that utilizes significantly less silicon area than the prior art. The core cell includes a transistor arrangement in which substrate taps are located adjacent to the transistor pairs. This provides for a more "symmetric" cell array than those in the prior art. Through the placement of the taps outside of the transistors the power line connections can be routed in a simple and efficient manner. The architecture includes an extension portion in the contact region of the cell to further reduce wiring complexity. In addition the gate array architecture mirrors pairs of transistor columns to allow for the sharing of substrate taps between pairs of columns. This mirroring feature further reduces routing complexity. The cell architecture includes a substrate tap area that allows for the accommodation of a plurality of electrically isolated metal lines.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: December 23, 1997
    Assignee: Aspec Technology, Inc.
    Inventor: Patrick Yin
  • Patent number: 5635737
    Abstract: A gate array architecture is disclosed that utilizes significantly less silicon area than the prior art. The core cell includes a four transistor arrangement in which a substrate tap is located adjacent to the transistor pair. This provides for a more "symmetric" cell array than those in the prior art. Through the placement of the taps outside of the transistors the power line connections can be routed in a simple and efficient manner. The architecture includes an extension portion in the contact region of the cell to further reduce wiring complexity. In addition the gate array architecture mirrors pairs of transistor columns to allow for the sharing of substrate taps between pairs of columns. This mirroring feature further reduces routing complexity. The architecture further includes a plurality of probe lines that are located within the architecture to facilitate testability of the outputs of the architecture.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: June 3, 1997
    Assignee: Aspec Technology, Inc.
    Inventor: Patrick Yin
  • Patent number: 5493135
    Abstract: A gate array architecture is disclosed that utilizes significantly less silicon area than the prior art. The core cell includes a four transistor arrangement in which a substrate tap is located adjacent to the transistor pair. This provides for a more "symmetric" cell array than those in the prior art. Through the placement of the taps outside of the transistors the power line connections can be routed in a simple and efficient manner. The architecture includes an extension portion in the contact region of the cell to further reduce wiring complexity. In addition the gate array architecture mirrors pairs of transistor columns to allow for the sharing of substrate taps between pairs of columns. This mirroring feature further reduces routing complexity.
    Type: Grant
    Filed: January 23, 1995
    Date of Patent: February 20, 1996
    Assignee: Aspec Technology, Inc.
    Inventor: Patrick Yin
  • Patent number: 5463563
    Abstract: An automatic logic-model generation system operates on a schematic database and produces logic models incorporating accurate timing information. A verification process is also performed whereby the model is automatically verified for accuracy.
    Type: Grant
    Filed: June 30, 1993
    Date of Patent: October 31, 1995
    Assignee: LSI Logic Corporation
    Inventors: Owen S. Bair, Patrick Yin, Chih-Chung Chen
  • Patent number: 5404034
    Abstract: A gate array architecture is disclosed that utilizes significantly less silicon area than the prior art. The core cell includes a four transistor arrangement in which a substrate tap is located adjacent to the transistor pair. This provides for a more "symmetric" cell array than those in the prior art. Through the placement of the taps outside of the transistors the power line connections can be routed in a simple and efficient manner. In addition the gate array architecture mirrors pairs of transistor columns to allow for the sharing of substrate taps between pairs of columns. This mirroring feature further reduces routing complexity.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: April 4, 1995
    Assignee: Aspec Technology, Inc.
    Inventor: Patrick Yin
  • Patent number: 5384472
    Abstract: A gate array architecture is disclosed that utilizes significantly less silicon area than the prior art. The core cell includes a four transistor arrangement in which a substrate tap is located adjacent to the transistor pair. This provides for a more "symmetric" cell array than those in the prior art. Through the placement of the taps outside of the transistors the power line connections can be routed in a simple and efficient manner. The architecture includes an extension portion in the contact region of the cell to further reduce wiring complexity. In addition the gate array architecture mirrors pairs of transistor columns to allow for the sharing of substrate taps between pairs of columns. This mirroring feature further reduces routing complexity.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: January 24, 1995
    Assignee: Aspec Technology, Inc.
    Inventor: Patrick Yin
  • Patent number: 5278769
    Abstract: An automatic logic-model generation system operates on a schematic database and produces logic models incorporating accurate timing information. A verification process is also performed whereby the model is automatically verified for accuracy.
    Type: Grant
    Filed: April 12, 1991
    Date of Patent: January 11, 1994
    Assignee: LSI Logic Corporation
    Inventors: Owen S. Bair, Patrick Yin, Chih-Chung Chen
  • Patent number: 4465945
    Abstract: A Tri-State circuit element is constructed which is uniquely suited for use in large scale integrated circuit devices wherein a relatively large number of such Tri-State circuits are utilized to drive other circuitry contained within the integrated circuit device. One embodiment of a Tri-State circuit is constructed utilizing a single NAND gate (73), a single inverter (74), a single P channel transistor (76), and two N channel transistors (77, 78) yielding a circuit having a propagation delay of only two gate delays and requiring a total of only nine transistors. Another embodiment of this invention is a Tri-State circuit constructed utilizing a single NOR gate (84), a single inverter (83), a single N channel transistor (88), and two P channel transistors (86, 87). In this embodiment of my invention, a total of nine MOS transistors are required, and the propagation delay between the input terminal and the output terminal is equal to two gate delays.
    Type: Grant
    Filed: September 3, 1982
    Date of Patent: August 14, 1984
    Assignee: LSI Logic Corporation
    Inventor: Patrick Yin