Patents by Inventor Paul A. Moore

Paul A. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240409661
    Abstract: The present invention relates to antibodies and their fragments that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies and their immunoreactive fragments that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: August 5, 2024
    Publication date: December 12, 2024
    Inventors: Leslie S. Johnson, Paul A. Moore, Ling Huang, Deryk T. Loo, Francine Zhifen Chen
  • Patent number: 11942149
    Abstract: The present invention is directed to binding molecules that possess one or more epitope-binding sites specific for an epitope of CD137 and one or more epitope-binding sites specific for an epitope of a tumor antigen (“TA”) (e.g., a “CD137×TA Binding Molecule”). In one embodiment, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific tetravalent diabodies, that are composed of two, three, four or more than four polypeptide chains and possessing two epitope-binding sites each specific for an epitope of CD137 and two epitope-binding sites each specific for an epitope of a TA. Alternatively, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific trivalent binding molecules composed of three or more polypeptide chains and possessing one or two epitope-binding sites each specific for an epitope of CD137 and one or two epitope-binding sites each specific for an epitope of a TA.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: March 26, 2024
    Assignee: MACROGENICS, INC.
    Inventors: Liqin Liu, Chia-Ying Kao Lam, Gundo Diedrich, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini
  • Patent number: 11858991
    Abstract: The present invention is directed to the anti-LAG-3 antibodies: LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunoconjugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cell. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: January 2, 2024
    Assignee: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20230399399
    Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Application
    Filed: March 20, 2023
    Publication date: December 14, 2023
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
  • Patent number: 11840571
    Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: December 12, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Gurunadh Reddy Chichili, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Patent number: 11820818
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 21, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Gurunadh Reddy Chichili, Kalpana Shah, Chia-Ying Kao Lam, Stephen James Burke, Liqin Liu, Paul A. Moore, Ezio Bonvini, Bhaswati Barat
  • Publication number: 20230357404
    Abstract: The present invention is directed to selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1 : PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mA.b 5, PD-1 mA.b 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to PD-1 -binding molecules that comprise PD-1 binding fragments of such anti-PD-1 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such PD-1 -binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of using molecules that bind PD-1 for stimulating immune responses, as well as methods of detecting PD-1.
    Type: Application
    Filed: February 24, 2023
    Publication date: November 9, 2023
    Applicant: MACROGENICS, INC.
    Inventors: Kalpana Shah, Douglas H. Smith, Ross La Motte-Mohs, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Patent number: 11697684
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Tri-Specific Binding Molecule is preferably characterized in possessing binding domains that permit it to immunospecifically bind to: (1) an epitope of a first Cancer Antigen, (2) an epitope of a second Cancer Antigen, and (3) an epitope of a molecule that is expressed on the surface of an immune system effector cell, and are thus capable of localizing an immune system effector cell to a cell that expresses a Cancer Antigen, so as to thereby facilitate the killing of such cancer cell.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 11, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Ezio Bonvini, Paul A. Moore, Jonathan C. Li, Leslie S. Johnson, Kalpana Shah
  • Patent number: 11685781
    Abstract: The present invention is directed to DA×CD3 Binding Molecules comprising a vCD3-Binding Domain, which comprises a CDRHI Domain, a CDRH2 Domain, a CDRH3 Domain, a CDRL I Domain, a CDRL2 Domain, and a CDRL3 Domain, at least one of which differs in amino acid sequence from the amino acid sequence of the corresponding CDR of a rCD3-Binding Domain, wherein the DA×CD3 Binding Molecule comprising such vCD3-Binding Domain exhibits an altered affinity for CD3, relative to a DA×CD3 Binding Molecule comprising such rCD3-Binding Domain. The invention particularly concerns to such DA×CD3 Binding Molecules comprising a vCD3-Binding Domain which exhibit reduced affinity for CD3 and are capable of mediating redirected killing of target cells expressing a DA and exhibit lower levels of cytokine release relative to a DA×CD3 Binding Molecule comprising a rCD3-Binding Domain.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 27, 2023
    Inventors: Ezio Bonvini, Ling Huang, Chia-Ying Kao Lam, Gurunadh Reddy Chichili, Ralph Froman Alderson, Paul A. Moore, Leslie S. Johnson
  • Patent number: 11639386
    Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: May 2, 2023
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
  • Patent number: 11623959
    Abstract: The present invention is directed to selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1: PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to PD-1-binding molecules that comprise PD-1 binding fragments of such anti-PD-1 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such PD-1-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of using molecules that bind PD-1 for stimulating immune responses, as well as methods of detecting PD-1.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 11, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Kalpana Shah, Douglas H. Smith, Ross La Motte-Mohs, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20230056230
    Abstract: The present invention is directed to regimens for administering one or more Antibody-Based Molecules that bind PD-1 or PD-L1, and LAG-3 (e.g, a PD-1×LAG-3 bispecific molecule) alone, or in combination with an Antibody-Based Molecule that binds a Tumor Antigen (TA) for the treatment of cancer. The invention particularly concerns the use of such regimens in conjunction with PD-1×LAG-3 bispecific molecules. The invention is directed to the use of such molecules, and to the use of pharmaceutical compositions and pharmaceutical kits that contain such molecules and that facilitate the use of such dosing regimens in the treatment of cancer.
    Type: Application
    Filed: December 18, 2020
    Publication date: February 23, 2023
    Applicant: MacroGenics, Inc.
    Inventors: Bradley James Sumrow, Ross La Motte-Mohs, Jon Marc Wigginton, Ezio Bonvini, Paul A. Moore, Scott Koenig, Xiaoyu Zhang
  • Publication number: 20220406376
    Abstract: The present invention is directed to binding molecules that possess one or more epitope-binding sites specific for an epitope of CD137 and one or more epitope-binding sites specific for an epitope of a tumor antigen (“TA”) (e.g., a “CD137×TA Binding Molecule”). In one embodiment, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific tetravalent diabodies, that are composed of two, three, four or more than four polypeptide chains and possessing two epitope-binding sites each specific for an epitope of CD137 and two epitope-binding sites each specific for an epitope of a TA. Alternatively, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific trivalent binding molecules composed of three or more polypeptide chains and possessing one or two epitope-binding sites each specific for an epitope of CD137 and one or two epitope-binding sites each specific for an epitope of a TA.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 22, 2022
    Inventors: Liqin LIU, Chia-Ying Kao Lam, Gundo Diedrich, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini
  • Publication number: 20220372144
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of CD32B and one binding site specific for an epitope of CD79b (i.e., a “CD32B×CD79b bi-specific monovalent Fc diabody”). The bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to CD32B and CD79b. The invention is directed to such compositions, to pharmaceutical compositions that contain such bi-specific monovalent Fc diabodies and to methods for their use in the treatment of inflammatory diseases or conditions, and in particular, systemic lupus erythematosus (SLE) and graft vs. host disease.
    Type: Application
    Filed: June 8, 2022
    Publication date: November 24, 2022
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Kalpana Shah, Ezio Bonvini, Paul A. Moore, Wei Chen
  • Patent number: 11459394
    Abstract: The present invention is directed to binding molecules that possess one or more epitope-binding sites specific for an epitope of CD137 and one or more epitope-binding sites specific for an epitope of a tumor antigen (“TA”) (e.g., a “CD137×TA Binding Molecule”). In one embodiment, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific tetravalent diabodies, that are composed of two, three, four or more than four polypeptide chains and possessing two epitope-binding sites each specific for an epitope of CD137 and two epitope-binding sites each specific for an epitope of a TA. Alternatively, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific trivalent binding molecules composed of three or more polypeptide chains and possessing one or two epitope-binding sites each specific for an epitope of CD137 and one or two epitope-binding sites each specific for an epitope of a TA.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 4, 2022
    Assignee: MACROGENICS, INC.
    Inventors: Liqin Liu, Chia-Ying Kao Lam, Gundo Diedrich, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini
  • Patent number: 11384149
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of CD32B and one binding site specific for an epitope of CD79b (i.e., a “CD32B×CD79b bi-specific monovalent Fc diabody”). The bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to CD32B and CD79b. The invention is directed to such compositions, to pharmaceutical compositions that contain such bi-specific monovalent Fc diabodies and to methods for their use in the treatment of inflammatory diseases or conditions, and in particular, systemic lupus erythematosus (SLE) and graft vs. host disease.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: July 12, 2022
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Kalpana Shah, Ezio Bonvini, Paul A. Moore, Wei Chen
  • Publication number: 20220041714
    Abstract: The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific diabody”). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific, tetra-valent diabody”). The present invention also is directed to such diabodies that additionally comprise an immunoglobulin Fc Domain (“bi-specific Fc diabodies and bi-specific, tetra-valent, Fc diabodies”).
    Type: Application
    Filed: July 14, 2021
    Publication date: February 10, 2022
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Scott Koenig
  • Patent number: 11098119
    Abstract: The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific diabody”). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific, tetra-valent diabody”). The present invention also is directed to such diabodies that additionally comprise an immunoglobulin Fc Domain (“bi-specific Fc diabodies and bi-specific, tetra-valent, Fc diabodies”).
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 24, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Scott Koenig
  • Patent number: 11072653
    Abstract: The present invention is directed to the anti-LAG-3 antibodies, LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: July 27, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20210206851
    Abstract: The present invention is directed to the anti-LAG-3 antibodies: LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunoconjugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cell. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 8, 2021
    Applicant: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig