Patents by Inventor Paul A. Nyhus

Paul A. Nyhus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240071917
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 29, 2024
    Inventors: Richard E. SCHENKER, Robert L. BRISTOL, Kevin L. LIN, Florian GSTREIN, James M. BLACKWELL, Marie KRYSAK, Manish CHANDHOK, Paul A. NYHUS, Charles H. WALLACE, Curtis W. WARD, Swaminathan SIVAKUMAR, Elliot N. TAN
  • Patent number: 11854787
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Richard E. Schenker, Robert L. Bristol, Kevin L. Lin, Florian Gstrein, James M. Blackwell, Marie Krysak, Manish Chandhok, Paul A. Nyhus, Charles H. Wallace, Curtis W. Ward, Swaminathan Sivakumar, Elliot N. Tan
  • Publication number: 20230326794
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment a semiconductor device comprises a first interlayer dielectric (ILD), a plurality of source/drain (S/D) contacts in the first ILD, a plurality of gate contacts in the first ILD, wherein the gate contacts and the S/D contacts are arranged in an alternating pattern, and wherein top surfaces of the gate contacts are below top surfaces of the S/D contacts so that a channel defined by sidewall surfaces of the first ILD is positioned over each of the gate contacts, mask layer partially filling a first channel over a first gate contact, and a fill metal filling a second channel over a second gate contact that is adjacent to the first gate contact.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 12, 2023
    Inventors: Leonard P. GULER, Michael HARPER, Suzanne S. RICH, Charles H. WALLACE, Curtis WARD, Richard E. SCHENKER, Paul NYHUS, Mohit K. HARAN, Reken PATEL, Swaminathan SIVAKUMAR
  • Publication number: 20230307298
    Abstract: Aligned pitch-quartered patterning approaches for lithography edge placement error advanced rectification are described. For example, a method of fabricating a semiconductor structure includes forming a first patterned hardmask on a semiconductor substrate. A second hardmask layer is formed on the semiconductor substrate. A segregated di-block co-polymer is formed on the first patterned hardmask and on the second hardmask layer. Second polymer blocks are removed from the segregated di-block co-polymer. A second patterned hardmask is formed from the second hardmask layer and a plurality of semiconductor fins is formed in the semiconductor substrate using first polymer blocks as a mask. A first fin of the plurality of semiconductor fins is removed. Subsequent to removing the first fin, a second fin of the plurality of semiconductor fins is removed.
    Type: Application
    Filed: June 2, 2023
    Publication date: September 28, 2023
    Inventors: Charles H. WALLACE, Manish CHANDHOK, Paul A. NYHUS, Eungnak HAN, Stephanie A. BOJARSKI, Florian GSTREIN, Gurpreet SINGH
  • Patent number: 11721580
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment a semiconductor device comprises a first interlayer dielectric (ILD), a plurality of source/drain (S/D) contacts in the first ILD, a plurality of gate contacts in the first ILD, wherein the gate contacts and the S/D contacts are arranged in an alternating pattern, and wherein top surfaces of the gate contacts are below top surfaces of the S/D contacts so that a channel defined by sidewall surfaces of the first ILD is positioned over each of the gate contacts, mask layer partially filling a first channel over a first gate contact, and a fill metal filling a second channel over a second gate contact that is adjacent to the first gate contact.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: August 8, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Michael Harper, Suzanne S. Rich, Charles H. Wallace, Curtis Ward, Richard E. Schenker, Paul Nyhus, Mohit K. Haran, Reken Patel, Swaminathan Sivakumar
  • Publication number: 20230145089
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such semiconductor devices. In an embodiment, a method of fabricating a semiconductor device comprises, forming a first grating of parallel first lines, forming a second grating of parallel second lines, wherein the second lines are substantially orthogonal to the first lines, and wherein the first lines and second lines define a plurality of first openings, disposing a conformal mask layer over the first lines and the second lines, wherein the conformal mask layer partially fills the first openings and defines a second opening within each of the first openings, disposing a hardmask over the conformal mask layer, wherein the hardmask fills the second openings, patterning third openings into the hardmask, wherein the third openings clear the hardmask from at least one of the second openings, and removing the mask layer proximate to cleared second openings to clear first openings.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 11, 2023
    Inventors: Leonard P. GULER, Chul-Hyun LIM, Paul A. NYHUS, Elliot N. TAN, Charles H. WALLACE
  • Publication number: 20230101212
    Abstract: Contact over active gate (COAG) structures with conductive trench contact taps are described. In an example, an integrated circuit structure includes a plurality of gate structures above a substrate, each of the gate structures including a gate insulating layer thereon. A plurality of conductive trench contact structures is alternating with the plurality of gate structures, each of the conductive trench contact structures including a trench insulating layer thereon. One of the plurality of conductive trench contact structures includes a conductive tap structure protruding through the corresponding trench insulating layer. An interlayer dielectric material is above the trench insulating layers and the gate insulating layers. A conductive structure is in direct contact with the conductive tap structure of the one of the plurality of conductive trench contact structures.
    Type: Application
    Filed: September 30, 2022
    Publication date: March 30, 2023
    Inventors: Manish CHANDHOK, Elijah V. KARPOV, Mohit K. HARAN, Reken PATEL, Charles H. WALLACE, Gurpreet SINGH, Florian GSTREIN, Eungnak HAN, Urusa ALAAN, Leonard P. GULER, Paul A. NYHUS
  • Publication number: 20230095402
    Abstract: Contact over active gate (COAG) structures with conductive trench contact taps are described. In an example, an integrated circuit structure includes a plurality of gate structures above a substrate, each of the gate structures including a gate insulating layer thereon. A plurality of conductive trench contact structures is alternating with the plurality of gate structures, each of the conductive trench contact structures including a trench insulating layer thereon. One of the plurality of conductive trench contact structures includes a conductive tap structure protruding through the corresponding trench insulating layer. An interlayer dielectric material is above the trench insulating layers and the gate insulating layers. A conductive structure is in direct contact with the conductive tap structure of the one of the plurality of conductive trench contact structures.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Manish CHANDHOK, Elijah V. KARPOV, Mohit K. HARAN, Reken PATEL, Charles H. WALLACE, Gurpreet SINGH, Florian GSTREIN, Eungnak HAN, Urusa ALAAN, Leonard P. GULER, Paul A. NYHUS
  • Patent number: 11605623
    Abstract: An integrated circuit structure includes an active region containing more active semiconductor devices, wherein the active region comprises a first grating of metal and dielectric materials with only vertically aligned structures thereon. A transition region containing inactive structures is adjacent to the active region, wherein the transition region comprises a second grating of metal and dielectric materials having at least one of vertical aligned structures and vertical random structures thereon. Both the active regions and the transition regions have an absence of non-uniform gratings with horizontal parallel polymer sheets thereon.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Gurpreet Singh, Eungnak Han, Paul A. Nyhus, Florian Gstrein, Richard E. Schenker
  • Patent number: 11594448
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such semiconductor devices. In an embodiment, a method of fabricating a semiconductor device comprises, forming a first grating of parallel first lines, forming a second grating of parallel second lines, wherein the second lines are substantially orthogonal to the first lines, and wherein the first lines and second lines define a plurality of first openings, disposing a conformal mask layer over the first lines and the second lines, wherein the conformal mask layer partially fills the first openings and defines a second opening within each of the first openings, disposing a hardmask over the conformal mask layer, wherein the hardmask fills the second openings, patterning third openings into the hardmask, wherein the third openings clear the hardmask from at least one of the second openings, and removing the mask layer proximate to cleared second openings to clear first openings.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Chul-Hyun Lim, Paul A. Nyhus, Elliot N. Tan, Charles H. Wallace
  • Patent number: 11545449
    Abstract: A guard ring structure includes a plurality of first groups of concentric guard rings encompassing an active region of an integrated circuit, the concentric guard rings of the first groups having a guard ring pitch of less than 80 nm. The concentric guard rings of the first groups have a single, closed path that is distinct from an adjacent guard ring and defines a rectangular geometry with rounded corners. Second groups of guard rings are interspersed with and concentrically arranged with the first groups, where each corner region of the second groups include at least one guard ring defect. A method of fabricating a guard ring structure for an integrated circuit is also disclosed.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: January 3, 2023
    Assignee: Intel Corporation
    Inventors: Paul A. Nyhus, Gurpreet Singh
  • Patent number: 11527433
    Abstract: Methods and architectures for forming metal line plugs that define separations between two metal line ends, and for forming vias that interconnect the metal lines to an underlying contact. The line plugs are present in-plane with the metal lines while vias connecting the lines are in an underlying plane. One lithographic plate or reticle that prints lines at a given pitch (P) may be employed multiple times, for example each time with a pitch halving (P/2), or pitch quartering (P/4) patterning technique, to define both metal line ends and metal line vias. A one-dimensional (1D) grating mask may be employed in conjunction with cross-grating (orthogonal) masking structures that are likewise amenable to pitch splitting techniques.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 13, 2022
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Charles H. Wallace, Paul A. Nyhus
  • Publication number: 20220262722
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Richard E. SCHENKER, Robert L. BRISTOL, Kevin L. LIN, Florian GSTREIN, James M. BLACKWELL, Marie KRYSAK, Manish CHANDHOK, Paul A. NYHUS, Charles H. WALLACE, Curtis W. WARD, Swaminathan SIVAKUMAR, Elliot N. TAN
  • Patent number: 11417567
    Abstract: Conductive cap-based approaches for conductive via fabrication is described. In an example, an integrated circuit structure includes a plurality of conductive lines in an ILD layer above a substrate. Each of the conductive lines is recessed relative to an uppermost surface of the ILD layer. A plurality of conductive caps is on corresponding ones of the plurality of conductive lines, in recess regions above each of the plurality of conductive lines. A hardmask layer is on the plurality of conductive caps and on the uppermost surface of the ILD layer. The hardmask layer includes a first hardmask component on and aligned with the plurality of conductive caps, and a second hardmask component on an aligned with regions of the uppermost surface of the ILD layer. A conductive via is in an opening in the hardmask layer and on a conductive cap of one of the plurality of conductive lines.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Florian Gstrein, Eungnak Han, Rami Hourani, Ruth A. Brain, Paul A. Nyhus, Manish Chandhok, Charles H. Wallace, Chi-Hwa Tsang
  • Patent number: 11373950
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Richard E. Schenker, Robert L. Bristol, Kevin L. Lin, Florian Gstrein, James M. Blackwell, Marie Krysak, Manish Chandhok, Paul A. Nyhus, Charles H. Wallace, Curtis W. Ward, Swaminathan Sivakumar, Elliot N. Tan
  • Publication number: 20220199420
    Abstract: Disclosed herein are colored gratings in microelectronic structures. For example, a microelectronic structure may include first conductive structures alternating with second conductive structures, wherein individual ones of the first conductive structures include a bottom portion and a top portion, individual cap structures are on individual ones of the second conductive structures, the bottom portions of the first conductive structures are laterally spaced apart from and aligned with the second conductive structures, and the top portions of the first conductive structures are laterally spaced apart from and aligned with the cap structures. In some embodiments, a microelectronic structure may include one or more unordered lamellar regions laterally spaced apart from and aligned with the first conductive structures.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Applicant: INTEL CORPORATION
    Inventors: Gurpreet Singh, Eungnak Han, Manish Chandhok, Richard E. Schenker, Florian Gstrein, Paul A. Nyhus, Charles Henry Wallace
  • Publication number: 20220173034
    Abstract: An integrated circuit interconnect structure includes a first metallization level including a first metal line having a first sidewall and a second sidewall extending a length in a first direction. A second metal line is adjacent to the first metal line and a dielectric is between the first metal line and the second metal line. A second metallization level is above the first metallization level where the second metallization level includes a third metal line extending a length in a second direction orthogonal to the first direction. The third metal line extends over the first metal line and the second metal line but not beyond the first sidewall. A conductive via is between the first metal line and the third metal line where the conductive via does not extend beyond the first sidewall or beyond the second sidewall.
    Type: Application
    Filed: February 14, 2022
    Publication date: June 2, 2022
    Applicant: Intel Corporation
    Inventors: Manish Chandhok, Leonard Guler, Paul Nyhus, Gobind Bisht, Jonathan Laib, David Shykind, Gurpreet Singh, Eungnak Han, Noriyuki Sato, Charles Wallace, Jinnie Aloysius
  • Publication number: 20220157708
    Abstract: Methods for fabricating an IC structure, e.g., for fabricating a metallization stack portion of an IC structure, as well as related semiconductor devices, are disclosed. An example fabrication method includes splitting metal lines that are supposed to be included at a tight pitch in a single metallization layer into two vertically-stacked layers (hence the term “vertical metal splitting”) by using helmets and wrap-around dielectric spacers. Metal lines split into two such layers may be arranged at a looser pitch in each layer, compared to the pitch at which metal lines of the same size would have to be arranged if there were included in a single layer. Increasing the pitch of metal lines may advantageously allow decreasing the parasitic metal-to-metal capacitance associated with the metallization stack.
    Type: Application
    Filed: November 17, 2020
    Publication date: May 19, 2022
    Applicant: Intel Corporation
    Inventors: Leonard P. Guler, Charles Henry Wallace, Paul A. Nyhus
  • Publication number: 20220102148
    Abstract: Discussed herein is gate spacing in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: a first gate metal having a longitudinal axis; a second gate metal, wherein the longitudinal axis of the first gate metal is aligned with a longitudinal axis of the second gate metal; a first gate contact above the first gate metal; a second gate contact above the second gate metal; and an unordered region having an unordered lamellar pattern, wherein the unordered region is coplanar with the first gate contact and the second gate contact.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Charles Henry Wallace, Mohit K. Haran, Paul A. Nyhus, Gurpreet Singh, Eungnak Han, David Nathan Shykind, Sean Michael Pursel
  • Publication number: 20220102210
    Abstract: Contact over active gate (COAG) structures are described. In an example, an integrated circuit structure includes a plurality of gate structures above substrate, each of the gate structures including a gate insulating layer thereon. A plurality of conductive trench contact structures is alternating with the plurality of gate structures, each of the conductive trench contact structures including a trench insulating layer thereon. A remnant of a di-block-co-polymer is over a portion of the plurality of gate structures or the plurality of conductive trench contact structures. An interlayer dielectric material is over the di-block-co-polymer, over the plurality of gate structures, and over the plurality of conductive trench contact structures. An opening in the interlayer dielectric material. A conductive structure is in the opening, the conductive structure in direct contact with a corresponding one of the trench contact structures or with a corresponding one of the gate contact structures.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Paul A. NYHUS, Charles H. WALLACE, Manish CHANDHOK, Mohit K. HARAN, Gurpreet SINGH, Eungnak HAN, Florian GSTREIN, Richard E. SCHENKER, David SHYKIND, Jinnie ALOYSIUS, Sean PURSEL