Patents by Inventor Paul Comita

Paul Comita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097346
    Abstract: Methods for constructing multi-walled carbon nanotube (MWCNT) antenna arrays, may include: variable doping of the MWCNTs, forming light pipes with layers of variable dielectric glass, forming geometric diodes on full-wave rectified devices that propagate both electrons and holes, using clear conductive ground plans to form windows that can control a building's internal temperature, and generating multiple lithographic patterns with a single mask.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Inventors: Laurence H. COOKE, Darin S. OLSON, Paul COMITA, Robert E. COUSINS, Albert K. HENNING, Andreas HEGEDUS, David B. COOKE, Yao Te CHENG, John BURKE, Richard T. PRESTON
  • Patent number: 11824264
    Abstract: Methods for constructing multi-walled carbon nanotube (MWCNT) antenna arrays, may include: variable doping of the MWCNTs, forming light pipes with layers of variable dielectric glass, forming geometric diodes on full-wave rectified devices that propagate both electrons and holes, using clear conductive ground plans to form windows that can control a building's internal temperature, and generating multiple lithographic patterns with a single mask.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: November 21, 2023
    Assignee: NOVASOLIX, INC.
    Inventors: Laurence H. Cooke, Darin S. Olson, Paul Comita, Robert E. Cousins, Albert K. Henning, Andreas Hegedus, David B. Cooke, Yao Te Cheng, John Burke, Richard T. Preston
  • Publication number: 20220278461
    Abstract: Methods for constructing multi-walled carbon nanotube (MWCNT) antenna arrays, may include: variable doping of the MWCNTs, forming light pipes with layers of variable dielectric glass, forming geometric diodes on full-wave rectified devices that propagate both electrons and holes, using clear conductive ground plans to form windows that can control a building's internal temperature, and generating multiple lithographic patterns with a single mask.
    Type: Application
    Filed: May 19, 2022
    Publication date: September 1, 2022
    Inventors: Laurence H. COOKE, Darin S. OLSON, Paul COMITA, Robert E. COUSINS, Albert K. HENNING, David B. COOKE, Yao-Te CHENG, John BURKE, Richard T. PRESTON
  • Patent number: 10622503
    Abstract: A solar antenna array may comprise an array of carbon nanotube antennas that may capture and convert sunlight into electrical power. A method for constructing the solar antenna array from a glass top down to aluminum over a plastic bottom such that light passing through the glass top and/or reflected off the aluminum both may be captured by the antennas sandwiched between. Techniques for patterning the glass to further direct the light toward the antennas and techniques for continuous flow fabrication and testing are also described.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: April 14, 2020
    Assignee: NovaSolix, Inc.
    Inventors: Jyotsna Iyer, Paul Comita, Robert E. Cousins, Laurence H. Cooke
  • Patent number: 10580920
    Abstract: A solar antenna array may comprise an array of carbon nanotube antennas that may capture and convert sunlight into electrical power. A method for constructing the solar antenna array from a glass top down to aluminum over a plastic bottom such that light passing through the glass top and/or reflected off the aluminum both may be captured by the antennas sandwiched between. Techniques for patterning the glass to further direct the light toward the antennas and techniques for continuous flow fabrication and testing are also described.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: March 3, 2020
    Assignee: NovaSolix, Inc.
    Inventors: Laurence H. Cooke, Andreas Hegedus, Jyotsna Iyer, Paul Comita
  • Publication number: 20180026149
    Abstract: A solar antenna array may comprise an array of carbon nanotube antennas that may capture and convert sunlight into electrical power. A method for constructing the solar antenna array from a glass top down to aluminum over a plastic bottom such that light passing through the glass top and/or reflected off the aluminum both may be captured by the antennas sandwiched between. Techniques for patterning the glass to further direct the light toward the antennas and techniques for continuous flow fabrication and testing are also described.
    Type: Application
    Filed: July 27, 2017
    Publication date: January 25, 2018
    Inventors: Jyotsna IYER, Paul COMITA, Robert E. COUSINS, Laurence H. COOKE
  • Publication number: 20170309766
    Abstract: A solar antenna array may comprise an array of carbon nanotube antennas that may capture and convert sunlight into electrical power. A method for constructing the solar antenna array from a glass top down to aluminum over a plastic bottom such that light passing through the glass top and/or reflected off the aluminum both may be captured by the antennas sandwiched between. Techniques for patterning the glass to further direct the light toward the antennas and techniques for continuous flow fabrication and testing are also described.
    Type: Application
    Filed: January 20, 2017
    Publication date: October 26, 2017
    Inventors: Laurence H. COOKE, Andreas HEGEDUS, Jyotsna IYER, Paul COMITA
  • Publication number: 20170309767
    Abstract: A solar antenna array may comprise an array of carbon nanotube antennas that may capture and convert sunlight into electrical power. A method for constructing the solar antenna array from a glass top down to an aluminum covered plastic bottom such that light passing through the glass top and/or reflected off the aluminum bottom both may be captured by the antennas sandwiched between. Techniques for patterning the glass to further direct the light toward the antennas and techniques for continuous flow fabrication and testing are also described.
    Type: Application
    Filed: August 29, 2016
    Publication date: October 26, 2017
    Inventors: Laurence H. COOKE, Andreas HEGEDUS, Jyotsna IYER, Paul COMITA, William J. ALLEN
  • Publication number: 20080102218
    Abstract: Methods for depositing a silicon-containing film are described. The methods may include delivering a silicon compound to a surface or a substrate, and reacting the silicon compound to grow the silicon-containing film. The silicon compound may be one or more compounds having a formula selected from the group Si4X8, Si4X10, Si5X10, and Si5X12, where X is independently a hydrogen or halogen.
    Type: Application
    Filed: January 3, 2008
    Publication date: May 1, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Paul Comita, Lance Scudder, David Carlson
  • Publication number: 20070240632
    Abstract: Embodiments of the invention relate to methods for depositing silicon-containing materials on a substrate. In one example, a method for selectively and epitaxially depositing a silicon-containing material is provided which includes positioning and heating a substrate containing a crystalline surface and a non-crystalline surface within a process chamber, exposing the substrate to a process gas containing neopentasilane, and depositing an epitaxial layer on the crystalline surface. In another example, a method for blanket depositing a silicon-containing material is provide which includes positioning and heating a substrate containing a crystalline surface and feature surfaces within a process chamber and exposing the substrate to a process gas containing neopentasilane and a carbon source to deposit a silicon carbide blanket layer across the crystalline surface and the feature surfaces.
    Type: Application
    Filed: October 12, 2006
    Publication date: October 18, 2007
    Inventors: Kaushal Singh, Paul Comita, Lance Scudder, David Carlson
  • Publication number: 20070171417
    Abstract: Methods and apparatus for performing scatterometry measurements of biological samples as described herein. A substrate having formed therein one or more sample wells is provided. Each sample well is configured to hold a sample solution containing objects that are to be characterized based on their light scattering properties. One or more sample solutions are dispensed into the sample wells. A specular reflection reducing element is applied to at least some of the sample solutions in the sample wells to decrease reflections of light into one or more detectors. A light beam is directed from a light source onto the objects in the sample wells. Light scattered by the objects in the sample wells is collected and transmitted to one or more detectors. The signal from the detectors is analyzed to detect the one or more characteristics of the one or more samples.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 26, 2007
    Inventors: Evan Cromwell, Steven Miller, Robert Trujillo, Paul Comita
  • Publication number: 20060234279
    Abstract: Methods and apparatus are described for detecting specific binding between first and second chemical entities. The first chemical entity in association with a first fluorophore is immobilized. The second chemical entity is allowed to bind with the immobilized first chemical entity. The second chemical entity is or becomes coupled to a second fluorophore, which forms a FRET pair with the first fluorophore. The bound chemical entities are exposed to radiation at an excitation frequency for either the first or the second fluorophore, and polarization anisotropy of a FRET fluorescent signal from the bound chemical entities is measured to detect specific binding between the first and second chemical entities.
    Type: Application
    Filed: April 4, 2006
    Publication date: October 19, 2006
    Inventors: Steven Miller, Paul Comita, Christopher Shumate, Evan Cromwell
  • Publication number: 20060003320
    Abstract: Methods, apparatus, and system, implementing and using techniques for detecting a presence of one or more target analytes in particular regions of interest of one or more samples. One or more samples including objects and one or more target analytes are provided. Some of the target analytes are labeled with a fluorophore and are bound to some of the objects in the samples. The samples are illuminated with fluorescence inducing light and fluorescent light is collected from one or more regions of the one or more samples. At least one anisotropy measurement of the samples is performed to identify regions of interest where one or more target analytes are bound to the objects. The collected fluorescent light from the regions of interest is analyzed to determine a presence of target analytes that are bound to the objects in the one or more samples.
    Type: Application
    Filed: July 1, 2005
    Publication date: January 5, 2006
    Inventors: Steven Miller, Paul Comita, Evan Cromwell, Christopher Shumate
  • Publication number: 20050264805
    Abstract: Methods and apparatus for assaying biological materials employ multi-well substrates as described herein. The substrates include a plurality of wells, typically each of several nanoliters volume or smaller having consistent dimensions and formed in a rigid substrate such as a glass disk. Each well may be provided with a circumferential lip to minimize crosstalk between wells and/or facilitate optical location of the individual wells during interrogation. Samples are provided to the individual wells and assayed by an optical technique employing fluorescence, polarization, reflectance, or the like. A scanning laser system may be employed for this purpose. The substrate may rotate during the scan to allow consistent interrogation of the wells without stopping and starting the rotation. Multiple rotations may also be employed repeatedly interrogate the samples for use in a kinetic study, for example.
    Type: Application
    Filed: February 9, 2005
    Publication date: December 1, 2005
    Inventors: Evan Cromwell, Steven Miller, Christopher Shumate, Paul Comita
  • Publication number: 20050046849
    Abstract: Methods and apparatus, including computer program products, implementing and using techniques for collecting optical data pertaining to one or more characteristics of a sample. A light beam of a first frequency is scanned onto a sample surface using one or more illumination optical elements. Light of a second frequency is collected from a scan line on the sample surface using one or more collection optical elements. None of the one or more collection optical elements are included among the one or more illumination optical elements. The collected light is transmitted to a detector.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 3, 2005
    Inventors: Evan Cromwell, Johann Adam, Andrei Brunfeld, Paul Comita, Christopher Seipert
  • Publication number: 20050046848
    Abstract: Methods and apparatus, including computer program products, implementing and using techniques for collecting optical data pertaining to one or more characteristics of a sample. The apparatus has a light source, one or more illumination optical elements, a scanner, one or more collection optical elements, and a device forming an aperture that limits detection of light from the sample. The illumination optical elements direct a light beam from the light source onto the sample. The scanner scans the light beam across the sample. The collection optical elements collect light from the sample and transmit the collected light to a detector. None of the collection optical elements are included among the illumination optical elements. The device forming an aperture limits detection of light from the sample to light associated with a limited vertical depth within the sample, and is one of the collection optical elements.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 3, 2005
    Inventors: Evan Cromwell, Johann Adam, Andrei Brunfeld, Paul Comita, Christopher Seipert
  • Publication number: 20040050326
    Abstract: A fluid delivery system for providing fluids to a substrate processing system. The fluid delivery system may include a first manifold having a first inlet, a first outlet, and a second outlet, wherein the first outlet and the second outlet are coupled to the substrate processing system. The fluid delivery system mat further include a first conduit for coupling a first fluid to the first inlet and a flow controller for controlling the flow of the first fluid through the first conduit. The fluid delivery system may also include a computer controlled metering valve coupled to the first outlet.
    Type: Application
    Filed: September 12, 2002
    Publication date: March 18, 2004
    Inventors: Karin Anna Lena Thilderkvist, Christopher Todd Fulmer, Paul Comita, Annie A. Karpati
  • Patent number: 6562720
    Abstract: A method of smoothing a silicon surface formed on a substrate. According to the present invention a substrate having a silicon surface is placed into a chamber and heated to a temperature of between 1000°-1300° C. While the substrate is heated to a temperature between 1000°-1300° C., the silicon surface is exposed to a gas mix comprising H2 and HCl in the chamber to smooth the silicon surface.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: May 13, 2003
    Assignees: Applied Materials, Inc., Silicon Genesis Corporation
    Inventors: Anna Lena Thilderkvist, Paul Comita, Lance Scudder, Norma Riley
  • Patent number: 6489241
    Abstract: A method of smoothing a silicon surface formed on a substrate. According to the present invention a substrate having a silicon surface is placed into a chamber and heated to a temperature of between 1000°-1300° C. While the substrate is heated to a temperature between 1000°-1300° C., the silicon surface is exposed to a gas mix comprising H2 and HCl in the chamber to smooth the silicon surface.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: December 3, 2002
    Assignees: Applied Materials, Inc., Silicon Genesis Corporation
    Inventors: Anna Lena Thilderkvist, Paul Comita, Lance Scudder, Norma Riley
  • Patent number: 6476362
    Abstract: A lamp array for a thermal processing chamber. The lamp array includes a plurality of lamps arranged in a generally circular array. The plurality of lamps can be arranged in one or more concentric rings to form a generally circular array. Additional lamp arrays can be provided adjacent the circumference of the circular array or outermost concentric ring to provide a generally rectangular heating pattern. At least one row of lamps can be provided tangentially to the circular portion of the lamp array to provide preheating or postheating of process gases in the flow direction of a rectangular processing chamber.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: November 5, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Thomas E. Deacon, Roger N. Anderson, David K. Carlson, Paul Comita