Patents by Inventor Paul E. Burrows

Paul E. Burrows has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040262576
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Application
    Filed: June 16, 2004
    Publication date: December 30, 2004
    Inventors: Mark E. Thompson, Peter Djurovich, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen R. Forrest, Marc A. Baldo, Paul E. Burrows
  • Patent number: 6830828
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: December 14, 2004
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark E. Thompson, Peter Djurovich, Sergey Lamansky, Stephen R. Forrest, Marc A. Baldo, Paul E. Burrows
  • Patent number: 6811829
    Abstract: A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: November 2, 2004
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Publication number: 20040085016
    Abstract: A highly transparent non-metallic cathode is disclosed that comprises a metal-doped organic electron injection layer that is in direct contact with a transparent non-metallic electron injecting cathode layer, such as indium tin oxide (ITO), wherein the metal-doped organic electron injection layer also functions as an exciton blocking or hole blocking layer. The metal-doped organic electron injection layer is created by diffusing an ultra-thin layer of about 5-10 Å of a highly electropositive metal such as Li throughout the layer. A representative embodiment of the highly transparent non-metallic cathode comprises a layer of ITO, a layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), which acts as an electron injection, exciton blocking, and hole blocking layer, and an ultra-thin layer of lithium, which degenerately dopes the layer of BCP, improving the electron injecting properties of the BCP layer.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 6, 2004
    Inventors: Guatam Parthasarathy, Chihaya Adachi, Paul E. Burrows, Stephen R. Forrest
  • Publication number: 20040018305
    Abstract: A tool for depositing multilayer coatings onto a substrate. The tool includes a housing defining a vacuum chamber connected to a vacuum source, deposition stations each configured to deposit a layer of multilayer coating on the substrate, a curing station, and a contamination reduction device. At least one of the deposition stations is configured to deposit an inorganic layer, while at least one other deposition station is configured to deposit an organic layer. In one tool configuration, the substrate may travel back and forth through the tool as many times as needed to achieve the desired number of layers of multilayer coating. In another, the tool may include numerous housings adjacently spaced such that the substrate may make a single unidirectional pass. The contamination reduction device may be configured as one or more migration control chambers about at least one of the deposition stations, and further includes cooling devices, such as chillers, to reduce the presence of vaporous layer precursors.
    Type: Application
    Filed: April 11, 2003
    Publication date: January 29, 2004
    Inventors: John Chris Pagano, Kenneth Jeffrey Nelson, Paul E. Burrows, Mark Edward Gross, Mac R. Zumhoff, Peter Maclyn Martin, Charles C. Bonham, Gordon Lee Graff
  • Publication number: 20040007178
    Abstract: Methods for preparing organic thin films on substrates, the method comprising the steps of providing a plurality of organic precursors in the vapor phase, and reacting the plurality or organic precursors at a sub-atmospheric pressure. Also included are thin films made by such a method and apparatuses used to conduct such a method. The method is well-suited to the formation of organic light emitting devices and other display-related technologies.
    Type: Application
    Filed: May 2, 2003
    Publication date: January 15, 2004
    Inventors: Stephen R. Forrest, Paul E. Burrows, Vladimir S. Ban
  • Publication number: 20040009306
    Abstract: A method for making a polymer layer with a selected index of refraction. The method includes flash evaporating a polymer precursor material capable of cross linking into a polymer with the selected index of refraction, forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, and cryocondensing the glow discharge polymer precursor plasma on a substrate as a condensate and crosslinking the condensate thereon, the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma, forming a polymer having the selected index of refraction.
    Type: Application
    Filed: March 19, 2001
    Publication date: January 15, 2004
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Patent number: 6677174
    Abstract: The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. A first layer of organic materials is deposited over a substrate, followed by a first electrode layer. A first patterned die having a raised portion is then pressed onto the first electrode layer, such that the raised portion of the first patterned die contacts portions of the first electrode layer. The patterned die is removed, such that the portions of the first electrode layer in contact with the raised portions of the first patterned die are removed. In one embodiment of the invention, a second organic layer is then deposited over the first electrode layer, followed by a second electrode layer. A second patterned die having a raised portion is pressed onto the second electrode layer, such that the raised portion of the second patterned die contacts portions of the second electrode layer.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: January 13, 2004
    Assignee: The Trustees of Princeton University
    Inventors: Changsoon Kim, Paul E. Burrows, Stephen R. Forrest, Theodore Zhou
  • Publication number: 20030235648
    Abstract: A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
    Type: Application
    Filed: June 25, 2003
    Publication date: December 25, 2003
    Inventors: John D. Affinito, Peter M. Martin, Gordon L. Graff, Paul E. Burrows, Mark E. Gross, Linda S. Sapochak
  • Publication number: 20030213967
    Abstract: A multicolor organic light emitting device employs vertically stacked layers of double heterostructure devices which are fabricated from organic compounds. The vertical stacked structure is formed on a glass base having a transparent coating of ITO or similar metal to provide a substrate. Deposited on the substrate is the vertical stacked arrangement of three double heterostructure devices, each fabricated from a suitable organic material. Stacking is implemented such that the double heterostructure with the longest wavelength is on the top of the stack. This constitutes the device emitting red light on the top with the device having the shortest wavelength, namely, the device emitting blue light, on the bottom of the stack. Located between the red and blue device structures is the green device structure.
    Type: Application
    Filed: June 11, 2003
    Publication date: November 20, 2003
    Inventors: Stephen R. Forrest, Mark E. Thompson, Paul E. Burrows, Vladimir Bulovic, Gong Gu
  • Publication number: 20030203236
    Abstract: Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound.
    Type: Application
    Filed: April 30, 2003
    Publication date: October 30, 2003
    Inventors: Mark E. Thompson, Yujian You, Andrei Shoustikov, Scott Sibley, Paul E. Burrows, Stephen R. Forrest
  • Patent number: 6639357
    Abstract: A highly transparent non-metallic cathode is disclosed that comprises a metal-doped organic electron injection layer that is in direct contact with a transparent non-metallic electron injecting cathode layer, such as indium tin oxide (ITO), wherein the metal-doped organic electron injection layer also functions as an exciton blocking or hole blocking layer. The metal-doped organic electron injection layer is created by diffusing an ultra-thin layer of about 5-10 Å of a highly electropositive metal such as Li throughout the layer. A representative embodiment of the highly transparent non-metallic cathode comprises a layer of ITO, a layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), which acts as an electron injection, exciton blocking, and hole blocking layer, and an ultra-thin layer of lithium, which degenerately dopes the layer of BCP, improving the electron injecting properties of the BCP layer.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: October 28, 2003
    Assignee: The Trustees of Princeton University
    Inventors: Gautam Parthasarathy, Chihaya Adachi, Paul E. Burrows, Stephen R. Forrest
  • Patent number: 6613395
    Abstract: A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: September 2, 2003
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Peter M. Martin, Gordon L. Graff, Paul E. Burrows, Mark E. Gross, Linda S. Sapochak
  • Patent number: 6596134
    Abstract: A multicolor organic light emitting device employs vertically stacked layers of double heterostructure devices which are fabricated from organic compounds. The vertical stacked structure is formed on a glass base having a transparent coating of ITO or similar metal to provide a substrate. Deposited on the substrate is the vertical stacked arrangement of three double heterostructure devices, each fabricated from a suitable organic material. Stacking is implemented such that the double heterostructure with the longest wavelength is on the top of the stack. This constitutes the device emitting red light on the top with the device having the shortest wavelength, namely, the device emitting blue light, on the bottom of the stack. Located between the red and blue device structures is the green device structure.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: July 22, 2003
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Mark E. Thompson, Paul E. Burrows, Vladimir Bulovic, Gong Gu
  • Patent number: 6579632
    Abstract: Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: June 17, 2003
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark E. Thompson, Yujian You, Andrei Shoustikov, Scott Sibley, Paul E. Burrows, Stephen R. Forrest
  • Patent number: 6570325
    Abstract: An encapsulated organic light emitting device. The device may include a substrate, an organic light emitting layer stack adjacent to the substrate, and at least one first barrier stack adjacent to the organic light emitting device, the at least one first barrier stack comprising at least one first barrier layer and at least one first decoupling layer wherein the at least one first barrier stack encapsulates the organic light emitting device. There may be a second barrier stack adjacent to the substrate and located between the substrate and the organic light emitting device. The second barrier stack has at least one second barrier layer and at least one second decoupling layer. A method of making the encapsulated organic light emitting device is also provided.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: May 27, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Gordon L. Graff, Mark E. Gross, John D. Affinito, Ming-Kun Shi, Michael G. Hall, Eric S. Mast, Robert Walty, Nicole Rutherford, Paul E. Burrows, Peter M. Martin
  • Patent number: 6558736
    Abstract: Methods for preparing organic thin films on substrates, the method comprising the steps of providing a plurality of organic precursors in the vapor phase, and reacting the plurality or organic precursors at a sub-atmospheric pressure. Also included are thin films made by such a method and apparatuses used to conduct such a method. The method is well-suited to the formation of organic light emitting devices and other display-related technologies.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: May 6, 2003
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Paul E. Burrows, Vladimir S. Ban
  • Patent number: 6548956
    Abstract: A multicolor organic light emitting device employs vertically stacked layers of double heterostructure devices which are fabricated from organic compounds. The vertical stacked structure is formed on a glass base having a transparent coating of ITO or similar metal to provide a substrate. Deposited on the substrate is the vertical stacked arrangement of three double heterostructure devices, each fabricated from a suitable organic material. Stacking is implemented such that the double heterostructure with the longest wavelength is on the top of the stack. This constitutes the device emitting red light on the top with the device having the shortest wavelength, namely, the device emitting blue light, on the bottom of the stack. Located between the red and blue device structures is the green device structure.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: April 15, 2003
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Mark E. Thompson, Paul E. Burrows, Vladimir Bulovic, Gong Gu
  • Publication number: 20030064171
    Abstract: An edge-sealed barrier film composite. The composite includes a substrate and at least one initial barrier stack adjacent to the substrate. The at least one initial barrier stack includes at least one decoupling layer and at least one barrier layer. One of the barrier layers has an area greater than the area of one of the decoupling layers. The decoupling layer is sealed by the first barrier layer within the area of barrier material. An edge-sealed, encapsulated environmentally sensitive device is provided. A method of making the edge-sealed barrier film composite is also provided.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Paul E. Burrows, J. Chris Pagano, Eric S. Mast, Peter M. Martin, Gordon L. Graff, Mark E. Gross
  • Publication number: 20030017361
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Application
    Filed: June 13, 2002
    Publication date: January 23, 2003
    Inventors: Mark E. Thompson, Peter Djurovich, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen R. Forrest, Marc A. Baldo, Paul E. Burrows