Patents by Inventor Paul E. Burrows

Paul E. Burrows has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6497924
    Abstract: A method for making a non-linear optical polymer layer. The method includes flash evaporating a liquid polymer precursor mixture containing a plurality of non-linear optical molecules forming an evaporate, cryocondensing the evaporate on a substrate forming a cyrocondensed polymer precursor layer, and crosslinking the cryocondensed polymer precursor layer. The surface may be electrically biased for poling during crosslinking.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: December 24, 2002
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Publication number: 20020153243
    Abstract: A multicolor organic light emitting device employs vertically stacked layers of double heterostructure devices which are fabricated from organic compounds. The vertical stacked structure is formed on a glass base having a transparent coating of ITO or similar metal to provide a substrate. Deposited on the substrate is the vertical stacked arrangement of three double heterostructure devices, each fabricated from a suitable organic material. Stacking is implemented such that the double heterostructure with the longest wavelength is on the top of the stack. This constitutes the device emitting red light on the top with the device having the shortest wavelength, namely, the device emitting blue light, on the bottom of the stack. Located between the red and blue device structures is the green device structure.
    Type: Application
    Filed: December 21, 1999
    Publication date: October 24, 2002
    Inventors: STEPHEN R FORREST, MARK E THOMPSON, PAUL E BURROWS, VLADIMIR BULOVIC, GONG GU
  • Publication number: 20020155230
    Abstract: Methods for preparing organic thin films on substrates, the method comprising the steps of providing a plurality of organic precursors in the vapor phase, and reacting the plurality or organic precursors at a sub-atmospheric pressure. Also included are thin films made by such a method and apparatuses used to conduct such a method. The method is well-suited to the formation of organic light emitting devices and other display-related technologies.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 24, 2002
    Inventors: Stephen R. Forrest, Paul E. Burrows, Vladimir S. Ban
  • Patent number: 6468819
    Abstract: The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. A first layer of organic materials is deposited over a substrate, followed by a first electrode layer. A first patterned die having a raised portion is then pressed onto the first electrode layer, such that the raised portion of the first patterned die contacts portions of the first electrode layer. The patterned die is removed, such that the portions of the first electrode layer in contact with the raised portions of the first patterned die are removed. In one embodiment of the invention, a second organic layer is then deposited over the first electrode layer, followed by a second electrode layer. A second patterned die having a raised portion is pressed onto the second electrode layer, such that the raised portion of the second patterned die contacts portions of the second electrode layer.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: October 22, 2002
    Assignee: The Trustees of Princeton University
    Inventors: Changsoon Kim, Paul E. Burrows, Stephen R. Forrest, Theodore Zhou
  • Patent number: 6451455
    Abstract: An organic light emitting device comprising a heterostructure for producing electro-luminescence. The heterostructure has a charge carrier layer that includes a compound having molecules having at least one electron transporting moiety that is a 2-methyl-8-quinolinolato ligand coordinated with a metal chosen from the group Al, Ga, and In, and at least one hole transporting moiety. For example, the compound may be bis(2-methyl-8-quinolinolato)[p-(N-phenyl-2-naphthylamino)phenolato]aluminum(III), bis(2-methyl-g-quinolinolato)p-carbazolphenolato)aluminum(III), or bis(2-methyl-8-quinolinolato)(m-carbazolphenolato)aluminum(III).
    Type: Grant
    Filed: April 1, 1998
    Date of Patent: September 17, 2002
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark Thompson, Yujian You, Andrei Shoustikov, Paul E. Burrows, Stephen R. Forrest
  • Publication number: 20020125822
    Abstract: An encapsulated organic light emitting device. The device may include a substrate, an organic light emitting layer stack adjacent to the substrate, and at least one first barrier stack adjacent to the organic light emitting device, the at least one first barrier stack comprising at least one first barrier layer and at least one first decoupling layer wherein the at least one first barrier stack encapsulates the organic light emitting device. There may be a second barrier stack adjacent to the substrate and located between the substrate and the organic light emitting device. The second barrier stack has at least one second barrier layer and at least one second decoupling layer. A method of making the encapsulated organic light emitting device is also provided.
    Type: Application
    Filed: June 22, 2001
    Publication date: September 12, 2002
    Inventors: Gordon L. Graff, Mark E. Gross, John D. Affinito, Ming-Kun Shi, Michael G. Hall, Eric S. Mast, Robert Walty, Nicole Rutherford, Paul E. Burrows, Peter M. Martin
  • Publication number: 20020122880
    Abstract: A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
    Type: Application
    Filed: April 16, 2001
    Publication date: September 5, 2002
    Inventors: John D. Affinito, Peter M. Martin, Gordon L. Graff, Paul E. Burrows, Mark E. Gross, Linda Sapochak
  • Publication number: 20020102363
    Abstract: A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.
    Type: Application
    Filed: March 19, 2001
    Publication date: August 1, 2002
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Publication number: 20020094594
    Abstract: The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. A first layer of organic materials is deposited over a substrate, followed by a first electrode layer. A first patterned die having a raised portion is then pressed onto the first electrode layer, such that the raised portion of the first patterned die contacts portions of the first electrode layer. The patterned die is removed, such that the portions of the first electrode layer in contact with the raised portions of the first patterned die are removed. In one embodiment of the invention, a second organic layer is then deposited over the first electrode layer, followed by a second electrode layer. A second patterned die having a raised portion is pressed onto the second electrode layer, such that the raised portion of the second patterned die contacts portions of the second electrode layer.
    Type: Application
    Filed: March 19, 2002
    Publication date: July 18, 2002
    Inventors: Changsoon Kim, Paul E. Burrows, Stephen R. Forrest, Theodore Zhou
  • Publication number: 20020090460
    Abstract: A method for making a non-linear optical polymer layer. The method includes flash evaporating a liquid polymer precursor mixture containing a plurality of non-linear optical molecules forming an evaporate, cryocondensing the evaporate on a substrate forming a cyrocondensed polymer precursor layer, and crosslinking the cryocondensed polymer precursor layer. The surface may be electrically biased for poling during crosslinking.
    Type: Application
    Filed: March 19, 2001
    Publication date: July 11, 2002
    Inventors: John D. Affinito, Gordon L. Graff, Peter M. Martin, Mark E. Gross, Paul E. Burrows, Linda S. Sapochak
  • Patent number: 6403392
    Abstract: A method of fabricating a device is provided. A shadow mask is positioned in a first position over a substrate. A first process is performed on the substrate through the shadow mask. After the first process is performed, the shadow mask is moved to a second position over the substrate, measured relative to the first position. After the shadow mask is moved to the second position, a second process is performed on the substrate through the shadow mask.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: June 11, 2002
    Assignee: The Trustees of Princeton University
    Inventors: Paul E. Burrows, Stephen R. Forrest, Vladimir Bulovic, Peifang Tian, Julie Brown
  • Publication number: 20020034656
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Application
    Filed: June 18, 2001
    Publication date: March 21, 2002
    Inventors: Mark E. Thompson, Peter Djurovich, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen R. Forrest, Marc A. Baldo, Paul E. Burrows
  • Patent number: 6337102
    Abstract: Methods for preparing organic thin films on substrates, the method comprising the steps of providing a plurality of organic precursors in the vapor phase, and reacting the plurality or organic precursors at a sub-atmospheric pressure. Also included are thin films made by such a method and apparatuses used to conduct such a method. The method is well-suited to the formation of organic light emitting devices and other display-related technologies.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: January 8, 2002
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Paul E. Burrows, Vladimir S. Ban
  • Publication number: 20010053463
    Abstract: Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound.
    Type: Application
    Filed: July 6, 2001
    Publication date: December 20, 2001
    Inventors: Mark E. Thompson, Yujian You, Andrei Shoustikov, Scott Sibley, Paul E. Burrows, Stephen R. Forrest
  • Patent number: 6330262
    Abstract: Lasers comprising a substrate and a layer of organic material over the substrate. The organic material includes host and dopant materials that result in the laser emission of a desired color when pumped by optical pump energy. Host materials include CBP and tris-(8-hydroxyquinoline) aluminum, which when combined with dopant materials such as coumarin-47, coumarin-30, perylene, rhodamine-6G, DCM, DCM2, and pyrromethane-546 result in the efficient lasing of colors such as blue, green and yellow.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: December 11, 2001
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Paul E. Burrows, Stephen R. Forrest, Mark Thompson, Vladimir G. Kozlov, Gautam Parthasarathy
  • Patent number: 6303238
    Abstract: Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: October 16, 2001
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark E. Thompson, Yujian You, Andrei Shoustikov, Scott Sibley, Paul E. Burrows, Stephen R. Forrest
  • Patent number: 6294398
    Abstract: The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. The method includes depositing a first layer of organic materials over a substrate; depositing a second layer of an electrode material over the first layer of organic materials; pressing a patterned die having a raised portion onto the second layer; and removing the patterned die. Preferably the patterned die is coated with a metal. Optionally the method includes depositing additional layers over the substrate prior to pressing the patterned die.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: September 25, 2001
    Assignee: The Trustees of Princeton University
    Inventors: Changsoon Kim, Paul E. Burrows, Stephen R. Forrest
  • Patent number: 6274980
    Abstract: An organic light emitting device (OLED) which emits high intensity light is formed as a stack of individual OLEDs simultaneously emitting light of the same color.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: August 14, 2001
    Assignee: The Trustees of Princeton University
    Inventors: Paul E. Burrows, Stephen R. Forrest
  • Patent number: 6264805
    Abstract: A multicolor organic light emitting device employs vertically stacked layers of double heterostructure devices which are fabricated from organic compounds. The vertical stacked structure is formed on a glass base having a transparent coating of ITO or similar metal to provide a substrate. Deposited on the substrate is the vertical stacked arrangement of three double heterostructure devices, each fabricated from a suitable organic material. Stacking is implemented such that the double heterostructure with the longest wavelength is on the top of the stack. This constitutes the device emitting red light on the top with the device having the shortest wavelength, namely, the device emitting blue light, on the bottom of the stack. Located between the red and blue device structures is the green device structure.
    Type: Grant
    Filed: June 10, 1997
    Date of Patent: July 24, 2001
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Mark E. Thompson, Paul E. Burrows, Vladimir Bulovic, Gong Gu
  • Publication number: 20010002279
    Abstract: Methods for preparing organic thin films on substrates, the method comprising the steps of providing a plurality of organic precursors in the vapor phase, and reacting the plurality or organic precursors at a sub-atmospheric pressure. Also included are thin films made by such a method and apparatuses used to conduct such a method. The method is well-suited to the formation of organic light emitting devices and other display-related technologies.
    Type: Application
    Filed: December 13, 2000
    Publication date: May 31, 2001
    Inventors: Stephen R. Forrest, Paul E. Burrows, Vladimir S. Ban