Patents by Inventor Paul Enquist

Paul Enquist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050161795
    Abstract: A bonded device structure including a first substrate having a first set of metallic bonding pads, preferably connected to a device or circuit, and having a first non-metallic region adjacent to the metallic bonding pads on the first substrate, a second substrate having a second set of metallic bonding pads aligned with the first set of metallic bonding pads, preferably connected to a device or circuit, and having a second non-metallic region adjacent to the metallic bonding pads on the second substrate, and a contact-bonded interface between the first and second set of metallic bonding pads formed by contact bonding of the first non-metallic region to the second non-metallic region. At least one of the first and second substrates may be elastically deformed.
    Type: Application
    Filed: March 22, 2005
    Publication date: July 28, 2005
    Applicant: Ziptronix
    Inventors: Qin-Yi Tong, Paul Enquist, Anthony Rose
  • Publication number: 20050079712
    Abstract: A method for bonding at low or room temperature includes steps of surface cleaning and activation by cleaning or etching. One etching process The method may also include removing by-products of interface polymerization to prevent a reverse polymerization reaction to allow room temperature chemical bonding of materials such as silicon, silicon nitride and SiO2. The surfaces to be bonded are polished to a high degree of smoothness and planarity. VSE may use reactive ion etching or wet etching to slightly etch the surfaces being bonded. The surface roughness and planarity are not degraded and may be enhanced by the VSE process. The etched surfaces may be rinsed in solutions such as ammonium hydroxide or ammonium fluoride to promote the formation of desired bonding species on the surfaces.
    Type: Application
    Filed: August 9, 2004
    Publication date: April 14, 2005
    Applicant: Ziptronix, Inc.
    Inventors: Qin-Yi Tong, Gaius Fountain, Paul Enquist
  • Publication number: 20050009246
    Abstract: A method for providing encapsulation of an electronic device which obtains an encapsulating member configured to enclose the electronic device, prepares a surface of the encapsulating member for non-adhesive direct bonding, prepares a surface of a device carrier including the electronic device for non-adhesive direct bonding, and bonds the prepared surface of the encapsulating member to the prepared surface of the device carrier to form an encapsulation of the electronic device. As such, an encapsulated electronic device results which includes the device carrier having a first bonding region encompassing the electronic device, includes the encapsulating member having at least one relief preventing contact between the electronic device and the encapsulating member and having a second bonding region bonded to the first bonding region of the device carrier, and includes a non-adhesive direct bond formed between the first and second bonding regions thereby to form an encapsulation of the electronic device.
    Type: Application
    Filed: August 9, 2004
    Publication date: January 13, 2005
    Applicant: Ziptronix, Inc.
    Inventors: Paul Enquist, Qin-Yi Tong, Gaius Fountain, Robert Markunas
  • Patent number: 6756281
    Abstract: A semiconductor device and method of fabricating the device. An emitter region is formed self centered and self aligned symmetrically with a base region. Using frontside processing techniques, a collector is formed symmetrically self-aligned with the base region and the emitter region. The collector region may be further formed self-centered with the base region using backside processing techniques. The self-aligned and self-centered symmetric structure virtually eliminates parasitic elements in the device significantly improving the device performance. The device is scalable on the order of approximately 0.1 microns. The method also provides reproduceability and repeatability of device characteristics necessary for commercial manufacture of the symmetric device.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: June 29, 2004
    Assignee: Ziptronix
    Inventor: Paul Enquist
  • Patent number: 6740909
    Abstract: A semiconductor device and method of fabricating the device. An emitter region is formed self centered and self aligned symmetrically with a base region. Using frontside processing techniques, a collector is formed symmetrically self-aligned with the base region and the emitter region. The collector region may be further formed self-centered with the base region using backside processing techniques. The self-aligned and self-centered symmetric structure virtually eliminates parasitic elements in the device significantly improving the device performance. The device is scalable on the order of approximately 0.1 microns. The method also provides reproduceability and repeatability of device characteristics necessary for commercial manufacture of the symmetric device.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: May 25, 2004
    Assignee: Ziptronix, Inc.
    Inventor: Paul Enquist
  • Patent number: 6368930
    Abstract: A semiconductor device and method of fabricating the device. An emitter region is formed self centered and self aligned symmetrically with a base region. Using frontside processing techniques, a collector is formed symmetrically self-aligned with the base region and the emitter region. The collector region may be further formed self-centered with the base region using backside processing techniques. The self-aligned and self-centered symmetric structure virtually eliminates parasitic elements in the device significantly improving the device performance. The device is scalable on the order of approximately 0.1 microns. The method also provides reproduceability and repeatability of device characteristics necessary for commercial manufacture of the symmetric device.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: April 9, 2002
    Assignee: Ziptronix
    Inventor: Paul Enquist
  • Publication number: 20010019873
    Abstract: A semiconductor device and method of fabricating the device. An emitter region is formed self centered and self aligned symmetrically with a base region. Using frontside processing techniques, a collector is formed symmetrically self-aligned with the base region and the emitter region. The collector region may be further formed self-centered with the base region using backside processing techniques. The self-aligned and self-centered symmetric structure virtually eliminates parasitic elements in the device significantly improving the device performance. The device is scalable on the order of approximately 0.1 microns. The method also provides reproduceability and repeatability of device characteristics necessary for commercial manufacture of the symmetric device.
    Type: Application
    Filed: April 2, 2001
    Publication date: September 6, 2001
    Applicant: Research Triangle Institute
    Inventor: Paul Enquist
  • Patent number: 6242794
    Abstract: A semiconductor device and method of fabricating the device. An emitter region is formed self centered and self aligned symmetrically with a base region. Using frontside processing techniques, a collector is formed symmetrically self-aligned with the base region and the emitter region. The collector region may be further formed self-centered with the base region using backside processing techniques. The self-aligned and self-centered symmetric structure virtually eliminates parasitic elements in the device significantly improving the device performance. The device is scalable on the order of approximately 0.1 microns. The method also provides reproduceability and repeatability of device characteristics necessary for commercial manufacture of the symmetric device.
    Type: Grant
    Filed: May 13, 1999
    Date of Patent: June 5, 2001
    Assignee: Research Triangle Institute
    Inventor: Paul Enquist
  • Patent number: 6107151
    Abstract: A heterojunction bipolar transistor structure grown with organometallic vapor phase epitaxy (OVMPE) which uses zinc as the base dopant. The HBT structure has eight layers grown on a substrate, including n-type doped first, second, third, fifth, sixth, seventh, and eighth layers and a p-type zinc doped fourth layer. The first layer is a thicker, moderately doped n-type layer compared to the thinner, higher doped n-type second layer. The seventh layer is a thicker, moderately doped n-type layer compared to the thinner, higher doped n-type eighth layer. In addition, some or perhaps all of the layers have a high V/III ratio of 10-100 used to increase the gallium vacancies and reduce the diffusion of zinc from the base layer. Further, annealing of the structure is performed during growth to minimize gallium interstitials and to inhibit the diffusion of zinc.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: August 22, 2000
    Assignee: Research Triangle Institute
    Inventor: Paul Enquist