Patents by Inventor Paul Kendall Smith

Paul Kendall Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10253638
    Abstract: Embodiments of the present disclosure are directed toward systems including a turbomachine blade tip shroud having a pressure side portion and a suction side portion. The pressure side portion and the suction side portion are divided by a mean camber line of a turbomachine blade, and the pressure side portion has a greater surface area than the suction side portion.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: April 9, 2019
    Assignee: General Electric Company
    Inventors: Rohit Chouhan, Sumeet Soni, Paul Kendall Smith, Srinivasa Govardhan Jayana, Sylvain Pierre, Harish Bommanakatte, Santhosh Kumar Vijayan, Spencer Aaron Kareff
  • Patent number: 10221710
    Abstract: Various embodiments of the invention include turbine nozzles and systems employing such nozzles. Various particular embodiments include a turbine nozzle having: an airfoil having: a suction side; a pressure side opposing the suction side; a leading edge spanning between the pressure side and the suction side; and a trailing edge opposing the leading edge and spanning between the pressure side and the suction side; and at least one endwall connected with the airfoil along the suction side, pressure side, trailing edge and the leading edge, the at least one endwall including a non-axisymmetric contour proximate a junction between the endwall and the leading edge of the airfoil.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: March 5, 2019
    Assignee: General Electric Company
    Inventors: Aaron Gregory Winn, George Andrew Gergely, Mary Virginia Holloway, Paul Kendall Smith
  • Patent number: 10138736
    Abstract: Embodiments of the present disclosure are directed toward systems including a turbomachine blade tip shroud having a pressure side portion and a suction side portion. The pressure side portion and the suction side portion are divided by a mean camber line of a turbomachine blade, and the pressure side portion has a greater surface area than the suction side portion.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: November 27, 2018
    Assignee: General Electric Company
    Inventors: Rohit Chouhan, Sumeet Soni, Paul Kendall Smith, Srinivasa Govardhan Jayana, Sylvain Pierre, Harish Bommanakatte, Spencer Aaron Kareff
  • Patent number: 10001014
    Abstract: Various embodiments of the invention include turbine buckets and systems employing such buckets. Various particular embodiments include a turbine bucket having: an airfoil having: a suction side; a pressure side opposing the suction side; a leading edge spanning between the pressure side and the suction side; and a trailing edge opposing the leading edge and spanning between the pressure side and the suction side; and a base connected with a first end of the airfoil along the suction side, pressure side, trailing edge and the leading edge, the base including a non-axisymmetric contour proximate a junction between the base and the airfoil.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: June 19, 2018
    Assignee: General Electric Company
    Inventors: Mark Steven Honkomp, Xiaoyong Fu, Paul Kendall Smith, Jalindar Appa Walunj
  • Patent number: 9988916
    Abstract: Embodiments of the present disclosure provide a cooling structure for a stationary blade, including: an endwall coupled to a radial end of an airfoil; a chamber positioned within the endwall and radially displaced from a radially outer end of the trailing edge of the airfoil, wherein the chamber includes a pair of opposing chamber walls, one of the pair of opposing chamber walls being positioned proximal to the pressure side surface of the airfoil and the other of the pair of opposing chamber walls being positioned proximal to the suction side surface and the trailing edge of the airfoil, and wherein the cooling fluid in the chamber is in thermal communication with least a portion of the endwall positioned proximal to the pressure side surface and the trailing edge of the airfoil; and a plurality of thermally conductive fixtures positioned within the chamber.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: June 5, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Aaron Gregory Winn, George Andrew Gergely, Mary Virginia Holloway, Paul Kendall Smith
  • Publication number: 20170226880
    Abstract: Various embodiments of the invention include turbine nozzles and systems employing such nozzles. Various particular embodiments include a turbine nozzle having: an airfoil having: a suction side; a pressure side opposing the suction side; a leading edge spanning between the pressure side and the suction side; and a trailing edge opposing the leading edge and spanning between the pressure side and the suction side; and at least one endwall connected with the airfoil along the suction side, pressure side, trailing edge and the leading edge, the at least one endwall including a non-axisymmetric contour proximate a junction between the endwall and the leading edge of the airfoil.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 10, 2017
    Inventors: Aaron Gregory Winn, George Andrew Gergely, Mary Virginia Holloway, Paul Kendall Smith
  • Publication number: 20170226864
    Abstract: Various embodiments of the invention include turbine buckets and systems employing such buckets. Various particular embodiments include a turbine bucket having: an airfoil having: a suction side; a pressure side opposing the suction side; a leading edge spanning between the pressure side and the suction side; and a trailing edge opposing the leading edge and spanning between the pressure side and the suction side; and a base connected with a first end of the airfoil along the suction side, pressure side, trailing edge and the leading edge, the base including a non-axisymmetric contour proximate a junction between the base and the airfoil.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 10, 2017
    Inventors: Mark Steven Honkomp, Xiaoyong Fu, Paul Kendall Smith, Jalindar Appa Walunj
  • Patent number: 9551226
    Abstract: Turbine frequency tuning, fluid dynamic efficiency, and performance can be improved using an airfoil profile and/or an endwall contour including at least one of a pressure side bump, a pressure side leading edge bump, or a suction side trough. In particular, by including two endwall bumps on the pressure side and a trough on the suction side combined with a particular airfoil profile, performance can be further improved.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: January 24, 2017
    Assignee: General Electric Company
    Inventors: Paul Kendall Smith, Harish Bommanakatte, Anthony Louis Giglio, Jason Douglas Herzlinger, Jacob Charles Perry, II, Alexander Stein
  • Publication number: 20170016339
    Abstract: Embodiments of the present disclosure provide a cooling structure for a stationary blade, including: an endwall coupled to a radial end of an airfoil; a chamber positioned within the endwall and radially displaced from a radially outer end of the trailing edge of the airfoil, wherein the chamber includes a pair of opposing chamber walls, one of the pair of opposing chamber walls being positioned proximal to the pressure side surface of the airfoil and the other of the pair of opposing chamber walls being positioned proximal to the suction side surface and the trailing edge of the airfoil, and wherein the cooling fluid in the chamber is in thermal communication with least a portion of the endwall positioned proximal to the pressure side surface and the trailing edge of the airfoil; and a plurality of thermally conductive fixtures positioned within the chamber.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 19, 2017
    Inventors: Aaron Gregory Winn, George Andrew Gergely, Mary Virginia Holloway, Paul Kendall Smith
  • Patent number: 9500085
    Abstract: A method for enhancing one or more performance parameters of a gas turbine having at least one row of clocked airfoils may generally include choosing a first, a second and a third row of airfoils where the third row is clocked relative to the first row. An unsteady computational fluid dynamics model may be used to determine at least one wake parameter of a working fluid flowing from the second row of the airfoils to the third row of the airfoils. At least one design parameter of the airfoils of the second row may be modified, and the unsteady computational fluid dynamics model may then be used to determine the effect of the airfoil design parameter modification on the at least one wake parameter. The effect on the wake parameter may be compared to a predetermined target range.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 22, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Paul Kendall Smith, Sylvain Pierre, Dennis Scott Holloway
  • Patent number: 9435221
    Abstract: Embodiments of the invention relate generally to turbomachines and, more particularly, to the positioning of airfoils to reduce pressure variations entering a diffuser. One embodiment includes a turbomachine comprising a diffuser, a plurality of airfoil rows, including a first airfoil row adjacent the diffuser, the first airfoil row being of a first type selected from a group consisting of stationary vanes and rotating blades, a second airfoil row adjacent the first airfoil row, the second airfoil row being of a second type different from the first type, and a third airfoil row of the first type adjacent the second airfoil row, wherein at least one of the plurality of airfoil rows is clocked, relative to another airfoil row of the turbomachine, reducing variations in airflow circumferential pressure at at least one spanwise location in the diffuser adjacent the first airfoil row in an operative state of the turbomachine.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 6, 2016
    Assignee: General Electric Company
    Inventor: Paul Kendall Smith
  • Publication number: 20160076385
    Abstract: Embodiments of the present disclosure are directed toward systems including a turbomachine blade tip shroud having a pressure side portion and a suction side portion. The pressure side portion and the suction side portion are divided by a mean camber line of a turbomachine blade, and the pressure side portion has a greater surface area than the suction side portion.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Rohit Chouhan, Sumeet Soni, Paul Kendall Smith, Srinivasa Govardhan Jayana, Sylvain Pierre, Harish Bommanakatte, Spencer Aaron Kareff
  • Patent number: 9255480
    Abstract: A turbine of a turbomachine is provided and includes opposing endwalls defining a pathway for a fluid flow and a plurality of interleaved blade stages and nozzle stages arranged axially along the pathway. The plurality of the blade stages includes a last blade stage at a downstream end of the pathway and a next-to-last blade stage upstream from the last blade stage. The plurality of the nozzle stages includes a last nozzle stage between the last blade stage and the next-to-last blade stage and a next-to-last nozzle stage upstream from the next-to-last blade stage. At least one of the next-to-last blade stage and the next-to-last nozzle stage includes aerodynamic elements configured to interact with the fluid flow and to define a throat distribution producing a tip strong pressure profile in the fluid flow.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 9, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Paul Kendall Smith, Gunnar Leif Siden, Craig Allen Bielek, Thomas William Vandeputte
  • Publication number: 20150345306
    Abstract: Embodiments of the present disclosure are directed toward systems including a turbomachine blade tip shroud having a pressure side portion and a suction side portion. The pressure side portion and the suction side portion are divided by a mean camber line of a turbomachine blade, and the pressure side portion has a greater surface area than the suction side portion.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Applicant: General Electric Company
    Inventors: Rohit Chouhan, Sumeet Soni, Paul Kendall Smith, Srinivasa Govardhan Jayana, Sylvain Pierre, Harish Bommanakatte, Santhosh Kumar Vijayan, Spencer Aaron Kareff
  • Patent number: 9109455
    Abstract: Embodiments of the present disclosure are directed toward systems including a turbomachine blade tip shroud having a pressure side portion and a suction side portion. The pressure side portion and the suction side portion are divided by a mean camber line of a turbomachine blade, and the pressure side portion has a greater surface area than the suction side portion.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: August 18, 2015
    Assignee: General Electric Company
    Inventors: Rohit Chouhan, Sumeet Soni, Paul Kendall Smith, Srinivasa Govardhan Jayana, Sylvain Pierre, Harish Bommanakatte, Santhosh Kumar Vijayan, Spencer Aaron Kareff
  • Publication number: 20150107265
    Abstract: Turbine frequency tuning, fluid dynamic efficiency, and performance can be improved using an airfoil profile and/or an endwall contour including at least one of a pressure side bump, a pressure side leading edge bump, or a suction side trough. In particular, by including two endwall bumps on the pressure side and a trough on the suction side combined with a particular airfoil profile, performance can be further improved.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: General Electric Company
    Inventors: Paul Kendall Smith, Harish Bommanakatte, Anthony Louis Giglio, Jason Douglas Herzlinger, Jacob Charles Perry, Alexander Stein
  • Publication number: 20150044017
    Abstract: Embodiments of the invention relate generally to turbomachines and, more particularly, to the positioning of airfoils to reduce pressure variations entering a diffuser. One embodiment includes a turbomachine comprising a diffuser, a plurality of airfoil rows, including a first airfoil row adjacent the diffuser, the first airfoil row being of a first type selected from a group consisting of stationary vanes and rotating blades, a second airfoil row adjacent the first airfoil row, the second airfoil row being of a second type different from the first type, and a third airfoil row of the first type adjacent the second airfoil row, wherein at least one of the plurality of airfoil rows is clocked, relative to another airfoil row of the turbomachine, reducing variations in airflow circumferential pressure at at least one spanwise location in the diffuser adjacent the first airfoil row in an operative state of the turbomachine.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: General Electric Company
    Inventor: Paul Kendall Smith
  • Patent number: 8845296
    Abstract: A turbine bucket is provided including a bucket airfoil having an airfoil shape, the bucket airfoil having a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table 1 wherein the Z values are non-dimensional values from 0% to 100% convertible to Z distances in inches by multiplying the Z values by a height of the airfoil in inches and adding the radius of the airfoil base, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z, the profile sections at the Z distances being joined smoothly with one another to form a complete airfoil shape.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 30, 2014
    Assignee: General Electric Company
    Inventors: Matthew Durham Collier, Gayathri Puram, Paul Kendall Smith, Jacob Charles Perry, II
  • Patent number: 8827641
    Abstract: A turbine nozzle is provided including a nozzle airfoil having an airfoil shape, the nozzle airfoil having a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table 1 wherein the Cartesian coordinate values of X, Y and Z are non-dimensional values from 0% to 100% convertible to dimensional distances in inches by multiplying the Cartesian coordinate values of X, Y and Z by a height of the airfoil in inches, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z, the airfoil profile sections at Z distances being joined smoothly with one another to form a complete airfoil shape.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Paul Kendall Smith, Mary Virginia Holloway, San Jason Nguyen, Daniel Jackson Dillard
  • Patent number: 8734116
    Abstract: A turbine bucket is provided including a bucket airfoil having an airfoil shape, the bucket airfoil having a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table 1 wherein the Cartesian coordinate values of X, Y and Z are non-dimensional values from 0% to 100% convertible to dimensional distances in inches by multiplying the Cartesian coordinate values of X, Y and Z by a height of the airfoil in inches, and wherein X and Y are distances in inches which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z, the airfoil profile sections at Z distances being joined smoothly with one another to form a complete airfoil shape.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: May 27, 2014
    Assignee: General Electric Company
    Inventors: Paul Kendall Smith, Spencer Aaron Kareff, Srinivasa Govardhan Jayana