Patents by Inventor Paul M. Werking

Paul M. Werking has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7956782
    Abstract: In general, this disclosure is directed to a differential current-mode sigma-delta digital-to-analog converter (SD DAC) with improved accuracy and reduced offset and gain errors. In one example, the SD DAC may include a current source configured to provide a differential current. The SD DAC may further include a switching network configured to adjust a polarity of the differential current according to a bit within the bit-stream to produce a differential current signal. The SD DAC may further include a current-to-voltage converter configured to convert the differential current signal to a differential voltage signal. In additional examples, the differential current source may include one or more source degeneration resistances. In further examples, the current-to-voltage converter may include a fully-differential operational amplifier. A low pass filter may be included within the current-to-voltage converter and/or coupled to the output of the current-to-voltage converter.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: June 7, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Publication number: 20110062937
    Abstract: A temperature compensated low voltage reference circuit can be realized with a reduced operating voltage overhead and reduced spatial requirements This is accomplished in several ways including integrating one or more bipolar junction transistors into a current differencing amplifier and reducing the number of components required to implement various voltage reference circuits. All of the reference circuits may be constructed with various types of transistors including DTMOS transistors.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 17, 2011
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventor: Paul M. Werking
  • Patent number: 7903011
    Abstract: A differential current-mode sigma-delta digital-to-analog converter (SD DAC) and a method for generating positive and negative reference voltages in a sigma-delta digital analog converter are described. The SD DAC includes a low pass filter (LPF) having a first and second input. The SD DAC further includes a first resistance and a second resistance coupled together at a common node. The first resistance may be coupled to the first input of the LPF and the second resistance may be coupled to the second input of the LPF. Additionally, the SD DAC includes a current supply and a switching network for supplying current from the current supply to the first and second resistances. The current supply and the resistances operate to generate a first voltage and a second voltage at the first and second inputs of the LPF.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: March 8, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Patent number: 7893759
    Abstract: Current conveyor based instrumentation amplifiers are disclosed. Such instrumentation amplifiers may have the higher common mode rejection ratios (CMRR), lower area requirements in integrated circuits, fewer resistors, fewer resistor matching requirements, less noise, and less distortion than prior art instrumentation amplifiers. One embodiment, with two input voltage lines and one output voltage line, comprises a single current conveyor and two resistors. Another embodiment, with two input voltage lines and two output voltage lines, comprises two current conveyors and four resistors, possibly in two matched pairs. Buffers may be used for impedance, frequency, and phase delay adjustment on any or all of the voltage lines.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: February 22, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Publication number: 20100315274
    Abstract: In general, this disclosure is directed to a differential current-mode sigma-delta digital-to-analog converter (SD DAC) with improved accuracy and reduced offset and gain errors. In one example, the SD DAC may include a current source configured to provide a differential current. The SD DAC may further include a switching network configured to adjust a polarity of the differential current according to a bit within the bit-stream to produce a differential current signal. The SD DAC may further include a current-to-voltage converter configured to convert the differential current signal to a differential voltage signal. In additional examples, the differential current source may include one or more source degeneration resistances. In further examples, the current-to-voltage converter may include a fully-differential operational amplifier. A low pass filter may be included within the current-to-voltage converter and/or coupled to the output of the current-to-voltage converter.
    Type: Application
    Filed: June 11, 2009
    Publication date: December 16, 2010
    Applicant: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Publication number: 20100156385
    Abstract: An amplifier capable of operating in multiple modes may include (a) first and second voltage inputs and (b) first and second current outputs that have substantially the same amplitude and polarity. Preferably, the inputs and outputs of the amplifier will have high impedances. The amplifier may operate in a first mode—and function as an operational amplifier—when the first and second current outputs are coupled together. The amplifier may operate in a second mode—and function as a type-2 current conveyor—when the second current output is coupled to the second voltage input. The amplifier may additionally include a third current output that has an amplitude that is substantially the same as the amplitudes of the first and second outputs and a polarity that is substantially opposite to the polarities of the first and second outputs. In this configuration the amplifier may function as a four-terminal floating nullor.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 24, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul M. Werking
  • Publication number: 20090322396
    Abstract: A method and a circuit for correcting duty cycle distortion. A delay insertion gate corrects data dependent delay distortion that is generated by CMOS flip-flop circuits. The delay insertion gate includes two field effect transistors and a current mirror. The two transistors each respectively receive an input signal from an upstream circuit. At least one of the transistors is coupled to an output node. The output node temporarily holds a voltage state within the delay insertion gate, correcting any distortion in the duty cycle of the input signals.
    Type: Application
    Filed: June 17, 2009
    Publication date: December 31, 2009
    Applicant: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Patent number: 7619549
    Abstract: For a sigma-delta digital-to-analog converter (SD DAC) that includes a voltage output and a low-pass filter having a given order, methods and systems for reducing a sign-bit pulse at the voltage output of the SD DAC without requiring use of a higher order low-pass filter are disclosed. A method includes receiving a first waveform and a second waveform, the first and second waveforms having a first phase relationship; setting the first phase relationship between the first and second waveforms to a second phase relationship by aligning at least one of the first and second waveforms such that a transition of the second waveform is approximately half way between a rising edge and adjacent falling edge of the first waveform; upon setting the second phase relationship, multiplying the first and second waveforms to produce a digital input; and providing the digital input to the SD DAC.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: November 17, 2009
    Assignee: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Patent number: 7552637
    Abstract: A torque driver that includes a regulator circuit for mitigating zero-g discontinuity effects and deadbanding is presented. An accelerometer may comprise the torque driver and the torque driver may be arranged to receive a control signal from a control circuit that is coupled to deflection sensing circuitry. When the accelerometer undergoes an acceleration the deflection sensing circuitry generates an acceleration signal that is communicated to the control circuit. The control circuit responsively generates a control signal, which the torque driver users to balance a proof mass beam within the accelerometer. The regulator circuit mitigates zero-g discontinuity effects and deadbanding by preventing the torque signal from producing torque signals that simultaneously track the control signal. To do this, the regulator circuit may include a rectifying buffer and/or a modulator.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: June 30, 2009
    Assignee: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Publication number: 20090135036
    Abstract: A differential current-mode sigma-delta digital-to-analog converter (SD DAC) and a method for generating positive and negative reference voltages in a sigma-delta digital analog converter are described. The SD DAC includes a low pass filter (LPF) having a first and second input. The SD DAC further includes a first resistance and a second resistance coupled together at a common node. The first resistance may be coupled to the first input of the LPF and the second resistance may be coupled to the second input of the LPF. Additionally, the SD DAC includes a current supply and a switching network for supplying current from the current supply to the first and second resistances. The current supply and the resistances operate to generate a first voltage and a second voltage at the first and second inputs of the LPF.
    Type: Application
    Filed: September 12, 2007
    Publication date: May 28, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul M. Werking
  • Patent number: 7535264
    Abstract: Methods and systems are provided for comparing currents. The method includes driving a first current through a first X leg of a first current conveyor circuit and a second current through a second X leg of a second current conveyor circuit. The method further includes draining a third current from a first X terminal of the first current conveyor circuit to produce a first positive transistor current and a first negative transistor current, and draining a fourth current from a second X terminal of the second current conveyor circuit to produce a second positive transistor current and a second negative transistor current. The method further includes summing the first positive transistor current and the second negative transistor current to produce a first current output, the first negative transistor current and the second positive transistor current to produce a second current output, and the first current output and the second current output to produce a summed current output.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: May 19, 2009
    Assignee: Honeywell International Inc.
    Inventors: James G. Hiller, Paul M. Werking
  • Publication number: 20090102690
    Abstract: For a sigma-delta digital-to-analog converter (SD DAC) that includes a voltage output and a low-pass filter having a given order, methods and systems for reducing a sign-bit pulse at the voltage output of the SD DAC without requiring use of a higher order low-pass filter are disclosed. A method includes receiving a first waveform and a second waveform, the first and second waveforms having a first phase relationship; setting the first phase relationship between the first and second waveforms to a second phase relationship by aligning at least one of the first and second waveforms such that a transition of the second waveform is approximately half way between a rising edge and adjacent falling edge of the first waveform; upon setting the second phase relationship, multiplying the first and second waveforms to produce a digital input; and providing the digital input to the SD DAC.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 23, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul M. Werking
  • Publication number: 20090058469
    Abstract: Methods and systems are provided for comparing currents. The method includes driving a first current through a first X leg of a first current conveyor circuit and a second current through a second X leg of a second current conveyor circuit. The method further includes draining a third current from a first X terminal of the first current conveyor circuit to produce a first positive transistor current and a first negative transistor current, and draining a fourth current from a second X terminal of the second current conveyor circuit to produce a second positive transistor current and a second negative transistor current. The method further includes summing the first positive transistor current and the second negative transistor current to produce a first current output, the first negative transistor current and the second positive transistor current to produce a second current output, and the first current output and the second current output to produce a summed current output.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: James G. Hiller, Paul M. Werking
  • Publication number: 20080231335
    Abstract: A method and a circuit for correcting duty cycle distortion. A delay insertion gate corrects data dependent delay distortion that is generated by CMOS flip-flop circuits. The delay insertion gate includes two field effect transistors and a current mirror. The two transistors each respectively receive an input signal from an upstream circuit. At least one of the transistors is coupled to an output node. The output node temporarily holds a voltage state within the delay insertion gate, correcting any distortion in the duty cycle of the input signals.
    Type: Application
    Filed: March 20, 2007
    Publication date: September 25, 2008
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul M. Werking
  • Publication number: 20080066561
    Abstract: A torque driver that includes a regulator circuit for mitigating zero-g discontinuity effects and deadbanding is presented. An accelerometer may comprise the torque driver and the torque driver may be arranged to receive a control signal from a control circuit that is coupled to deflection sensing circuitry. When the accelerometer undergoes an acceleration the deflection sensing circuitry generates an acceleration signal that is communicated to the control circuit. The control circuit responsively generates a control signal, which the torque driver users to balance a proof mass beam within the accelerometer. The regulator circuit mitigates zero-g discontinuity effects and deadbanding by preventing the torque signal from producing torque signals that simultaneously track the control signal. To do this, the regulator circuit may include a rectifying buffer and/or a modulator.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 20, 2008
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul M. Werking
  • Patent number: 7122997
    Abstract: A temperature compensated low voltage reference circuit can be realized with a reduced operating voltage overhead. This is accomplished in several ways including minimizing drain voltage variation at the drains of two inter-connected transistors and implementing a current conveyer in order to adjust the temperature coefficient of an output current or voltage. Various combinations of voltage minimization and temperature coefficient adjustments may be used to design a reference circuit to a circuit designer's preference. A temperature compensated current source may also be created. The temperature compensated current source may be used to provide a wide range of output voltages. All of the reference circuits may be constructed with various types of transistors including DTMOS transistors.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: October 17, 2006
    Assignee: Honeywell International Inc.
    Inventor: Paul M. Werking
  • Patent number: 6576977
    Abstract: An integrated dual-plate capacitor structure incorporates a small MOS transistor to reduce die area. The capacitor structure includes a semiconductor substrate having a first conductivity type and having a well region having a second conductivity type opposite the first conductivity type formed therein. An upper conductive plate and a lower conductive plate separated by a first layer of dielectric material are formed over the well region. The lower capacitor plate is separated from the upper surface of the well region by a second layer of dielectric material. A MOS transistor is formed in the semiconductor substrate. The MOS transistor includes space-apart source and drain regions of the second conductivity type that define a substrate channel region therebetween. A conductive gate is formed above the channel region and is separated therefrom by a layer of intervening dielectric material. The source region and the gate of the MOS transistor are connected to receive a bias voltage.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: June 10, 2003
    Assignee: National Semiconductor Corporation
    Inventors: Donald St. John Beeman, Paul M. Werking
  • Patent number: 6380757
    Abstract: Improved motor position detection circuitry based on commutation pulse counting, including a pulse recognition circuit, a pulse counting circuit, and a start pulse rejection circuit for rendering the position detection circuitry insensitive to start-up pulses associated with motor turn-on. The start pulse rejection circuit detects an off-to-on transition of a motor controller, and renders the position detection circuitry insensitive to start-up pulses generated in a predefined time window coinciding with the detected off-to-on transition. In a first mechanization, the start pulse rejection circuit maintains a nominal bias voltage at an input of the pulse recognition circuit for the duration of the predefined time window. In a second mechanization, the start pulse rejection circuit renders the pulse counting circuit insensitive to pulses produced by the pulse recognition circuit for the duration of the predefined time window.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: April 30, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Kenneth George Draves, Paul M. Werking
  • Patent number: 6262546
    Abstract: An improved motor commutation pulse detection circuit for comparing a filtered motor current signal to a threshold value, where the circuit is responsive to the actual or expected amplitude of the commutation pulses for adjusting the motor current signal or the threshold value so that the compared threshold value is substantially equal in amplitude to minimum amplitude commutation pulses in the compared motor current signal. In one circuit, the threshold value is varied in accordance with the average current flowing through the motor at the time of the commutation event. In another circuit, the threshold is effectively switched between a high value and a low value depending on the mode of operation of the motor. A motor run detection threshold is activated during motor running periods, while a motor brake detection threshold is activated during motor braking.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: July 17, 2001
    Assignee: Delphi Technologies, Inc.
    Inventors: Kenneth George Draves, Paul M. Werking
  • Patent number: 6229353
    Abstract: This invention relates to source-coupled logic (SCL) which is a functional derivative of emitter-coupled logic (ECL). ECL is widely recognized as having the characteristics of high speed (low propagation delay) and low power supply noise generation. The SCL of the prior art succeeds at maintaining and improving the low noise characteristics of this architecture but does not fulfill the promise of high speed that one would expect from a current-mode logic. In addition, it uses a differential form of logic that is not as flexible and easy-to-use as a reference controlled or “single-ended” logic. The SCL disclosed here has the desired high speed properties and maintains the ease of use that is a property of reference controlled ECL. In addition, the reference controlled SCL of this invention provides new capabilities that make it even more flexible than ECL in generating logical switching functions.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: May 8, 2001
    Inventor: Paul M. Werking