Patents by Inventor Paul Russell Wilson

Paul Russell Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11433351
    Abstract: A system and method for recovering carbon dioxide from a stream of gas using an absorption unit configured to receive the stream of gas and a stream of liquid absorbent. The gas includes carbon dioxide and vaporized water, and the liquid absorbent is chemically reactive with the carbon dioxide to form a solidified carbon dioxide-rich absorbent material. The gas and the liquid absorbent are mixed in the absorption unit such that a slurry that includes the solidified carbon dioxide-rich absorbent material and condensed water is formed therein. The system and method may also employ a transport mechanism coupled in communication with the absorption unit, wherein the transport mechanism is configured to channel the slurry downstream from the absorption unit.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: September 6, 2022
    Assignee: BAKER HUGHES COMPANY
    Inventors: Tiffany Elizabeth Pinard Westendorf, Paul Russell Wilson, Rachel Lizabeth Farnum
  • Publication number: 20200353408
    Abstract: A system and method for recovering carbon dioxide from a stream of gas using an absorption unit configured to receive the stream of gas and a stream of liquid absorbent. The gas includes carbon dioxide and vaporized water, and the liquid absorbent is chemically reactive with the carbon dioxide to form a solidified carbon dioxide-rich absorbent material. The gas and the liquid absorbent are mixed in the absorption unit such that a slurry that includes the solidified carbon dioxide-rich absorbent material and condensed water is formed therein. The system and method may also employ a transport mechanism coupled in communication with the absorption unit, wherein the transport mechanism is configured to channel the slurry downstream from the absorption unit.
    Type: Application
    Filed: March 23, 2020
    Publication date: November 12, 2020
    Inventors: Tiffany Elizabeth Pinard Westendorf, Paul Russell Wilson, Rachel Lizabeth Farnum
  • Patent number: 10596516
    Abstract: A system for use in recovering carbon dioxide from a stream of gas includes an absorption unit configured to receive the stream of gas and a stream of liquid absorbent. The gas includes carbon dioxide and vaporized water, and the liquid absorbent is chemically reactive with the carbon dioxide to form a solidified carbon dioxide-rich absorbent material. The gas and the liquid absorbent are mixed in the absorption unit such that a slurry that includes the solidified carbon dioxide-rich absorbent material and condensed water is formed therein. The system also includes a transport mechanism coupled in communication with the absorption unit, wherein the transport mechanism is configured to channel the slurry downstream from the absorption unit.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: March 24, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Tiffany Elizabeth Pinard Westendorf, Paul Russell Wilson, Rachel Lizabeth Farnum
  • Publication number: 20170282122
    Abstract: A system for use in recovering carbon dioxide from a stream of gas includes an absorption unit configured to receive the stream of gas and a stream of liquid absorbent. The gas includes carbon dioxide and vaporized water, and the liquid absorbent is chemically reactive with the carbon dioxide to form a solidified carbon dioxide-rich absorbent material. The gas and the liquid absorbent are mixed in the absorption unit such that a slurry that includes the solidified carbon dioxide-rich absorbent material and condensed water is formed therein. The system also includes a transport mechanism coupled in communication with the absorption unit, wherein the transport mechanism is configured to channel the slurry downstream from the absorption unit.
    Type: Application
    Filed: March 29, 2016
    Publication date: October 5, 2017
    Inventors: Tiffany Elizabeth Pinard Westendorf, Paul Russell Wilson, Rachel Lizabeth Farnum
  • Patent number: 8728599
    Abstract: This disclosure details methods and techniques for inhibiting natural gas hydrate formation in gas conduits. In one embodiment, an article is provided which comprises (a) a gas conduit defining a gas flow channel; (b) an interior surface of the gas conduit; (c) a hydrate inhibiting coating on the interior surface, wherein the coating comprises: (i) component A, a one- or two-part room temperature vulcanizable polyorganosiloxane composition comprising a surface-treated filler, a condensation catalyst, and a crosslinking agent; and any reaction products thereof; and optionally (ii) component B, a hydrate release-enhancing proportion of at least one polyorganosiloxane comprising one or more silanol or alkoxy-silyl groups and comprising from about 10 weight percent to about 85 weight percent of at least one hydroxy-terminated or alkoxy-terminated polyoxyalkylenealkyl radical; and optionally (iii) any reaction products thereof.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: May 20, 2014
    Assignee: General Electric Company
    Inventors: Biao Fang, Omprakash Samudrala, Ambarish Jayant Kulkarni, David Bruce Hall, Roderick Mark Lusted, Matthew David Butts, Shyam Sivaramakrishnan, Paul Russell Wilson, Mark Howard Giammattei, Christopher Edward Wolfe
  • Publication number: 20130105027
    Abstract: This disclosure details methods and techniques for inhibiting natural gas hydrate formation in gas conduits. In one embodiment, an article is provided which comprises (a) a gas conduit defining a gas flow channel; (b) an interior surface of the gas conduit; (c) a hydrate inhibiting coating on the interior surface, wherein the coating comprises: (i) component A, a one- or two-part room temperature vulcanizable polyorganosiloxane composition comprising a surface-treated filler, a condensation catalyst, and a crosslinking agent; and any reaction products thereof; and optionally (ii) component B, a hydrate release-enhancing proportion of at least one polyorganosiloxane comprising one or more silanol or alkoxy-silyl groups and comprising from about 10 weight percent to about 85 weight percent of at least one hydroxy-terminated or alkoxy-terminated polyoxyalkylenealkyl radical; and optionally (iii) any reaction products thereof.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Biao Fang, Omprakash Samudrala, Ambarish Jayant Kulkarni, David Bruce Hall, Roderick Mark Lusted, Matthew David Butts, Shyam Sivaramakrishnan, Paul Russell Wilson, Mark Howard Giammattei, Christopher Edward Wolfe
  • Patent number: 6790929
    Abstract: This invention relates to an extrusion method preparing polycarbonates from a solution of an oligomeric polycarbonate. A mixture of bis(methyl salicyl)carbonate (BMSC), BPA and a transesterification catalyst are first equilibrated at moderate temperatures to provide a solution of polycarbonate oligomer in methyl salicylate. The solution is then fed to a devolatilizing extruder, where the polymerization reaction is completed and the methyl salicylate solvent is removed. The solution comprising the oligomeric polycarbonate can also be pre-heated under pressure to a temperature above the boiling point of methyl salicylate and subsequently fed to a devolatilizing extruder equipped for rapid flashing off the solvent. The method provides polycarbonate with greater efficiency than the corresponding process in which unreacted monomers are fed to the extruder. Additionally, the method of the invention does not require the isolation of a precursor polycarbonate comprising ester-substituted phenoxy terminal groups.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: September 14, 2004
    Assignee: General Electric Company
    Inventors: Norberto Silvi, Mark Howard Giammattei, Patrick Joseph McCloskey, Alberto Nisoli, James Day, Narayan Ramesh, Paul Michael Smigelski, Jr., Paul Russell Wilson
  • Publication number: 20030236384
    Abstract: This invention relates to an extrusion method preparing polycarbonates from a solution of an oligomeric polycarbonate. A mixture of bis(methyl salicyl)carbonate (BMSC), BPA and a transesterification catalyst are first equilibrated at moderate temperatures to provide a solution of polycarbonate oligomer in methyl salicylate. The solution is then fed to a devolatilizing extruder, where the polymerization reaction is completed and the methyl salicylate solvent is removed. The solution comprising the oligomeric polycarbonate can also be pre-heated under pressure to a temperature above the boiling point of methyl salicylate and subsequently fed to a devolatilizing extruder equipped for rapid flashing off the solvent. The method provides polycarbonate with greater efficiency than the corresponding process in which unreacted monomers are fed to the extruder. Additionally, the method of the invention does not require the isolation of a precursor polycarbonate comprising ester-substituted phenoxy terminal groups.
    Type: Application
    Filed: March 17, 2003
    Publication date: December 25, 2003
    Applicant: General Electric Company
    Inventors: Norberto Silvi, Mark Howard Giammattei, Patrick Joseph McCloskey, Alberto Nisoli, James Day, Narayan Ramesh, Paul Michael Smigelski, Paul Russell Wilson
  • Publication number: 20030220514
    Abstract: A method of preparing a contact mass is provided comprising reacting silicon and a cuprous chloride to form a concentrated, catalytic contact mass. Furthermore, a method for making an alkylhalosilane using the aforementioned contact mass is provided comprising effecting reaction between an alkyl halide and silicon in the presence of said concentrated contact mass to produce alkylhalosilane.
    Type: Application
    Filed: May 20, 2002
    Publication date: November 27, 2003
    Applicant: General Electric Company
    Inventors: Larry Neil Lewis, Paul William Buckley, John Mathew Bablin, Paul Russell Wilson, David John Smith
  • Patent number: 6489372
    Abstract: Polymer are removed from organic solvent-polymer mixtures by preparing a liquid-liquid dispersion of finely dispersed solvent droplets containing polymer in water, adding this liquid-liquid dispersion to a stirred vessel containing water or other suitable liquid and rapidly evaporating the solvent to produce a slurry of the polymer in a liquid from which the solid polymer particles are recovered.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: December 3, 2002
    Assignee: General Electric Company
    Inventors: Qiwei He, Paul Russell Wilson, Paul William Buckley, Allen Wai Yee Ko, Larry Allen Divins, William Lee Gately, Ganesh Kailasam
  • Patent number: 6214892
    Abstract: This invention relates to a method of recovering a polymer from an organic mixture comprising polymer and an organic solvent, the method comprising: a) admixing an aqueous solution and the organic mixture by the application of a combined mechanical and hydraulic shear force, the combined mechanical and shear force being sufficient to form a liquid-liquid dispersion; b) removing the organic solvent from the liquid-liquid dispersion thereby forming a remaining solution; and c) separating the polymer from the remaining solution. In one embodiment the polymer is a polycarbonate prepared by the interfacial method, and the organic solvent is methylene chloride.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: April 10, 2001
    Assignee: General Electric Company
    Inventors: Qiwei He, Paul Russell Wilson, Paul William Buckley, Allen Wai Yee Ko, Larry Allen Divins
  • Patent number: 5668186
    Abstract: The invention relates to a novel process for depolymerizing polyesters by subjecting the polyesters to catalysts and organic solvents which are substantially free of oxygen and water in order to produce macrocyclic polyester oligomers substantially free of hydroxybutyl terminated linear impurities.
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: September 16, 1997
    Assignee: General Electric Company
    Inventors: Daniel Joseph Brunelle, Ganesh Kailasam, Judith Ann Serth-Guzzo, Paul Russell Wilson
  • Patent number: RE40697
    Abstract: This invention relates to an extrusion method preparing polycarbonates from a solution of an oligomeric polycarbonate. A mixture of bis(methyl salicyl)carbonate (BMSC), BPA and a transesterification catalyst are first equilibrated at moderate temperatures to provide a solution of polycarbonate oligomer in methyl salicylate. The solution is then fed to a devolatilizing extruder, where the polymerization reaction is completed and the methyl salicylate solvent is removed. The solution comprising the oligomeric polycarbonate can also be pre-heated under pressure to a temperature above the boiling point of methyl salicylate and subsequently fed to a devolatilizing extruder equipped for rapid flashing off the solvent. The method provides polycarbonate with greater efficiency than the corresponding process in which unreacted monomers are fed to the extruder. Additionally, the method of the invention does not require the isolation of a precursor polycarbonate comprising ester-substituted phenoxy terminal groups.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: April 7, 2009
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Norberto Silvi, Mark Howard Giammattei, Patrick Joseph McCloskey, Alberto Nisoli, James Day, Narayan Ramesh, Paul Michael Smigelski, Jr., Paul Russell Wilson