Patents by Inventor Pazhayannur Ramanathan Subramanian

Pazhayannur Ramanathan Subramanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110076180
    Abstract: Rhenium-free nickel based alloys are provided. More particularly, the alloys comprise preferred levels and ratios of elements so as to achieve good high temperature strength of both gamma matrix phase and gamma prime precipitates, as well as good environmental resistance, without using rhenium. When cast and directionally solidified into single crystal form, the alloys exhibit creep and oxidation resistance substantially equivalent to or better than rhenium-bearing single-crystal alloys. Further, the alloys can be processed by directional solidification into articles in single crystal form or columnar structure comprising fine dendrite arm spacing, e.g., less than 400 ?m, if need be, so that further improvements in mechanical properties in the articles can be seen.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, JR., Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian
  • Patent number: 7914856
    Abstract: The present invention provides methods for manufacturing an article having a wetting-resistant surface. The method includes providing a mixture comprising a plurality of micron-sized first particles and a plurality of nano-sized second particles, and a binder; depositing the mixture onto a substrate to form a wetting-resistant surface via a thermal spray process. The mixture is deposited without substantial melting of the first and second particles. The wetting-resistant surface has wettability sufficient to generate, with a reference fluid, a static contact angle of greater than about 90 degrees.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventors: Tao Deng, Dennis Michael Gray, Todd Charles Curtis, Yuk-Chiu Lau, Dalong Zhong, Ming Feng Hsu, Nitin Bhate, Kripa Kiran Varanasi, Pazhayannur Ramanathan Subramanian, Margaret Louise Blohm
  • Patent number: 7905965
    Abstract: A method of making a soft magnetic material with fine grain structure is provided. The method includes the steps of providing a soft magnetic starting material; heating the soft magnetic starting material to a temperature at which the material has a microstructure comprising at least two solid phases; and deforming the soft magnetic starting material. An electrical device comprising a magnetic component is provided. The magnetic component comprises a soft magnetic material having a grain size less than about 3 micrometers. The material has a composition that comprises at least two solid phases at temperatures greater than about 500° C.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: March 15, 2011
    Assignee: General Electric Company
    Inventors: Michael Francis Xavier Gigliotti, Richard DiDomizio, Luana Emiliana Iorio, Francis Johnson, Pazhayannur Ramanathan Subramanian, Mahesh Chandran
  • Publication number: 20100326571
    Abstract: An article made of an alloy, and a method for making the article, are presented. The alloy is substantially free of martensite, and comprises the following composition: at least about 75 weight percent titanium; up to about 10 weight percent of a beta stabilizing component; from about 3 weight percent to about 15 weight percent of an alpha stabilizing component; and from about 0.05 weight percent to about 5 weight percent germanium. Another embodiment is a method for fabricating an article. The method comprises providing a billet made of an alloy as described above, and stabilizing the billet microstructure to form a stabilized billet; the method may further comprise superplastically processing the stabilized billet to form a processed item.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrew David Deal, Radhakrishna Badekila Bhat, Richard DiDomizio, Judson Sloan Marte, Pazhayannur Ramanathan Subramanian
  • Patent number: 7832613
    Abstract: A system, in certain embodiments, includes a backing plate, a tungsten-based member disposed along the backing plate, wherein the tungsten-based member defines a welding work surface, and the tungsten-based member comprises curved grooves configured to secure the tungsten-based member to the backing plate. The system also includes a drive. The system includes a pin tool movable by the drive to create friction along one or more workpieces disposed on the welding work surface, wherein the frictional heating and mechanical stirring is configured to create a stir weld along the one or more workpieces. The system, in some embodiments, also may include a backing plate comprising liquid passages and gas passages and a tungsten-based member disposed along the backing plate, wherein the tungsten-based member defines a welding work surface.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventors: Timothy Hanlon, Timothy Joseph Trapp, Earl Claude Helder, Pazhayannur Ramanathan Subramanian
  • Patent number: 7784667
    Abstract: The present invention provides a friction stir welding apparatus operable for welding one or more metals, metal alloys, or other materials, and a method for friction stir welding. The friction stir welding apparatus includes a pin tool holder, a shoulder having a surface coupled to the pin tool holder, and a pin tool coupled to the pin tool holder, the pin tool at least partially protruding from the surface of the shoulder, wherein the pin tool is made of a consumable pin tool material. The method includes introducing the pin tool into a workpiece; traversing the pin tool along a joint to be welded on the workpiece; and substantially continuously feeding the pin tool into the weld joint as it is traversed along the joint, thereby incorporating at least a portion of the consumable pin tool material into the volume of the joint to be welded.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: August 31, 2010
    Assignee: General Electric Company
    Inventors: Pazhayannur Ramanathan Subramanian, Earl Claude Helder, Timothy Joseph Trapp
  • Publication number: 20100201469
    Abstract: A soft magnetic alloy including iron, cobalt, and at least one alloying addition including a platinum group metal, rhenium, or combinations thereof is provided. A device which is formed from such an alloy is also described.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 12, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Luana Emiliana Iorio, Michael Francis Xavier Gigliotti, Pazhayannur Ramanathan Subramanian, Francis Johnson, Israel Samson Jacobs
  • Publication number: 20100176182
    Abstract: A system, in certain embodiments, includes a backing plate, a tungsten-based member disposed along the backing plate, wherein the tungsten-based member defines a welding work surface, and the tungsten-based member comprises curved grooves configured to secure the tungsten-based member to the backing plate. The system also includes a drive. The system includes a pin tool movable by the drive to create friction along one or more workpieces disposed on the welding work surface, wherein the frictional heating and mechanical stirring is configured to create a stir weld along the one or more workpieces. The system, in some embodiments, also may include a backing plate comprising liquid passages and gas passages and a tungsten-based member disposed along the backing plate, wherein the tungsten-based member defines a welding work surface.
    Type: Application
    Filed: January 15, 2009
    Publication date: July 15, 2010
    Applicant: General Electric Company
    Inventors: Timothy Hanlon, Timothy Joseph Trapp, Earl Claude Helder, Pazhayannur Ramanathan Subramanian
  • Publication number: 20100172789
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Patent number: 7731810
    Abstract: A nanocomposite comprising a plurality of nanoparticles dispersed in a molybdenum-based matrix, and an x-ray tube component formed from such a nanocomposite. The nanocomposite contains volume fraction of nanoparticle dispersoids in a range from about 2 volume percent to about 20 volume percent. A method of making such molybdenum-based nanocomposites is also disclosed.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: June 8, 2010
    Assignee: General Electric Company
    Inventors: Pazhayannur Ramanathan Subramanian, Judson Sloan Marte, Paul Leonard Dupree
  • Patent number: 7704335
    Abstract: A refractory composition is described, containing niobium, silicon, titanium, and at least one of rhenium and ruthenium. The amount of silicon in the composition is at least about 9 atom %, and the amount of titanium present is less than about 26 atom %, based on total atomic percent. Turbine engine components formed from such a composition are also disclosed.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: April 27, 2010
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Laurent Cretegny, Pazhayannur Ramanathan Subramanian, Melvin Robert Jackson
  • Publication number: 20090042056
    Abstract: A coating suitable for use as protective oxide-forming coatings on Nb-based substrates, and particularly monolithic niobium-based alloys, exposed to high temperatures and oxidative environments. The coating contains aluminum, may further contain silicon, and optionally contains niobium, titanium, hafnium, and/or chromium, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. The intermetallic phases may be M(Al,Si)3, M5(Al,Si)3, and/or M3Si5Al2 where M is niobium, titanium, hafnium, and/or chromium.
    Type: Application
    Filed: September 26, 2008
    Publication date: February 12, 2009
    Applicant: GENERAL ELECTRIC COMAPNY
    Inventors: Bernard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard DiDomizio, Voramon Supatarawanich Dheeradhada
  • Publication number: 20090042054
    Abstract: Nb—Si based alloy articles comprising a Nb—Si based alloy upon which is disposed an environmentally-resistant coating are described. They include a coating comprising at least one phase selected from the group consisting of M(Al,Si)3, M5(Al,Si)3, and M3Si5Al2, wherein M is one or more of Nb, Ti, Hf, Cr. Such coating can improve the environmental (e.g., in oxidation-promoting environments) resistance of a Nb—Si based alloy and alloy articles. Methods for preparing these articles are described as well.
    Type: Application
    Filed: August 8, 2007
    Publication date: February 12, 2009
    Inventors: Bernard Patrick Bewlay, Ramgopal Darolia, Voramon Supatarawanich Dheeradhada, Richard DiDomizio, Michael Francis Xavier Gigliotti, Joseph David Rigney, Pazhayannur Ramanathan Subramanian
  • Publication number: 20090004379
    Abstract: The present invention provides methods for manufacturing an article having a wetting-resistant surface. The method includes providing a mixture comprising a plurality of micron-sized first particles and a plurality of nano-sized second particles, and a binder; depositing the mixture onto a substrate to form a wetting-resistant surface via a thermal spray process. The mixture is deposited without substantial melting of the first and second particles. The wetting-resistant surface has wettability sufficient to generate, with a reference fluid, a static contact angle of greater than about 90 degrees.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Tao Deng, Dennis Michael Gray, Todd Charles Curtis, Yuk-Chiu Lau, Dalong Zhong, Ming Feng Hsu, Nitin Bhate, Kripa Kiran Varanasi, Pazhayannur Ramanathan Subramanian, Margaret Louise Blohm
  • Publication number: 20080220236
    Abstract: An article including a monolithic body including iron, cobalt, and nitrogen is provided. The monolithic body includes a matrix phase and a plurality of particles disposed within the matrix phase. The particles include a phase comprising nitrogen.
    Type: Application
    Filed: April 23, 2008
    Publication date: September 11, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Luana Emiliana Iorio, Pazhayannur Ramanathan Subramanian, Michael Francis Xavier Gigliotti
  • Publication number: 20080181805
    Abstract: A nanocomposite comprising a plurality of nanoparticles dispersed in a molybdenum-based matrix, and an x-ray tube component formed from such a nanocomposite. The nanocomposite contains volume fraction of nanoparticle dispersoids in a range from about 2 volume percent to about 20 volume percent. A method of making such molybdenum-based nanocomposites is also disclosed.
    Type: Application
    Filed: June 28, 2007
    Publication date: July 31, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Pazhayannur Ramanathan Subramanian, Judson Sloan Marte, Paul Leonard Dupree
  • Publication number: 20080142122
    Abstract: Niobium silicide articles are described. They include a surface region enriched with at least about 25 atom % germanium, which can enhance the properties of the article. Methods for preparing these articles are described as well. According to one method, an article is formed from a niobium silicide composite material which contains a selected amount of germanium. The article is then heat-treated under conditions sufficient to increase the level of germanium in the surface region to at least about 25 atom %, based on the total composition of the surface region. In another embodiment, a germanium-containing material is applied over a niobium-silicide article, and then diffused into the surface region of the article by way of a heat treatment.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Applicant: GENERAL ELECTRIC
    Inventors: Bernard Patrick Bewlay, Richard DiDomizio, Pazhayannur Ramanathan Subramanian, Voramon Supatarawanich Dheeradhada, Joseph David Rigney, Ramgopal Darolia
  • Publication number: 20080145528
    Abstract: The present invention provides methods for manufacturing an article having a wetting-resistant surface. The method includes providing a substrate. The method further includes disposing a coating mixture on a surface of the substrate, wherein the coating mixture comprises a braze material and a texture-providing material. The method further includes heating the braze material to bond the texture-providing material to the surface of the substrate to form the article having the wetting-resistant surface.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Tao Deng, Pazhayannur Ramanathan Subramanian, Ming Feng Hsu, Yuk-Chiu Lau, Margaret L. Blohm, Wayne Charles Hasz, Nitin Bhate, Kripa Kiran Varanasi, Gregory Allen O'Neil
  • Publication number: 20080145691
    Abstract: An article is presented where the article comprises an alloy having a minor phase dispersed within a matrix phase and a plurality of substantially equiaxed grains. The article further comprises a continuous gradient in grain size from a first grain size at an outer surface of the article to a second grain size at an inner portion of the article, wherein the first grain size is less than the second grain size. Methods for forming the article using high deformation processing are also presented, where the processing includes extruding the feedstock material through a die having a twist channel configured to apply a torsional strain to the feedstock material as it passes through the die to form an extruded billet.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Applicant: GENERAL ELECTRIC
    Inventors: Pazhayannur Ramanathan Subramanian, Michael Francis Xavier Gigliotti, Dmytro Valentynovich Orlov, Sergiy Grygoryevych Snykov, Judson Sloan Marte, Jonathan Paul Blank, Yakiv Yukhymovych Beygelzimer
  • Publication number: 20080142126
    Abstract: A metallic structure having a graded microstructure is provided. The metallic structure comprises a graded region comprising a plurality of grains having a gradient in grain size varying as a function of position between a first median grain size at an outer region and a second median grain size at an inner region and a plurality of dispersoids dispersed within the microstructure. The first median grain size is different from the second median grain size. A method of forming a metallic structure having a graded microstructure is also provided. The method comprises: providing a metallic structure comprising at least one reactive species; diffusing at least one reactant at a controlled rate from an outer region of the metallic structure towards an inner region of the metallic structure to form a gradient in reactant activity; reacting the reactant with the reactive species to form a plurality of dispersoids; and heat treating the metallic structure to achieve grain growth so as to form a graded microstructure.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: MICHAEL FRANCIS XAVIER GIGLIOTTI, PAZHAYANNUR RAMANATHAN SUBRAMANIAN, SUNDAR AMANCHERLA, KRISHNAMURTHY ANAND, DHEEPA SRINIVASAN, CANAN USLU HARDWICKE