Patents by Inventor Peng-Fu Hsu

Peng-Fu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7208331
    Abstract: Methods and structures for critical dimension or profile measurement are disclosed. The method provides a substrate having periodic openings therein. Material layers are formed in the openings, substantially planarizing a surface of the substrate. A scattering method is applied to the substrate with the material layers for critical dimension (CD) or profile measurement.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: April 24, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jyu-Horng Shieh, Wen-Chih Chiou, Peng-Fu Hsu, Baw-Ching Perng, Hun-Jan Tao, Chia-Jen Chen
  • Patent number: 7122484
    Abstract: A method for removing organic material from an opening in a low k dielectric layer and above a metal layer on a substrate is disclosed. An ozone water solution comprised of one or more additives such as hydroxylamine or an ammonium salt is applied as a spray or by immersion. A chelating agent may be added to protect the metal layer from oxidation. A diketone may be added to the ozone water solution or applied in a gas or liquid phase in a subsequent step to remove any metal oxide that forms during the ozone treatment. A supercritical fluid mixture that includes CO2 and ozone can be used to remove organic residues that are not easily stripped by one of the aforementioned liquid solutions. The removal method prevents changes in the dielectric constant and refractive index of the low k dielectric layer and cleanly removes residues which improve device performance.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: October 17, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Baw-Ching Perng, Yi-Chen Huang, Jun-Lung Huang, Bor-Wen Chan, Peng-Fu Hsu, Hsin-Ching Shih, Lawrance Hsu, Hun-Jan Tao
  • Publication number: 20060220653
    Abstract: A method and system for determining the dielectric constant of a low-k dielectric film on a production substrate include measuring the electronic component of the dielectric constant using an ellipsometer, measuring the ionic component of the dielectric constant using an IR spectrometer, measuring the overall dielectric constant using a microwave spectrometer and deriving the dipolar component of the dielectric constant. The measurements and determination are non-contact and may be carried out on a production device that is further processed following the measurements.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 5, 2006
    Inventors: Jang-Shiang Tsai, Peng-Fu Hsu, Baw-Ching Perng, Ju-Wang Hsu, Jyu-Horng Shieh, Yi-Nien Su, Hun-Jan Tao
  • Publication number: 20060154478
    Abstract: Methods and structures for forming a contact hole structure are disclosed. These methods first form a substantially silicon-free material layer over a substrate. A material layer is formed over the substantially silicon-free material layer. A contact hole is formed within the substantially silicon-free material layer and the material layer without substantially damaging the substrate. In addition, a conductive layer is formed in the contact hole so as to form a contact structure.
    Type: Application
    Filed: January 12, 2005
    Publication date: July 13, 2006
    Inventors: Ju-Wang Hsu, Jyu-Horng Shieh, Yi-Nien Su, Peng-Fu Hsu, Hun-Jan Tao
  • Patent number: 7074727
    Abstract: Low-k organosilicate dielectric material can be exposed to a series of reagents, including a halogenation reagent, an alkylation reagent, and a termination reagent, in order to reverse degradation of dielectric properties caused by previous processing steps.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: July 11, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Fu Hsu, Jyu-Horng Shieh, Yung-Cheng Lu, Hun-Jan Tao, Yuan-Hung Chiu
  • Publication number: 20060073620
    Abstract: Methods and structures for critical dimension or profile measurement are disclosed. The method provides a substrate having periodic openings therein. Material layers are formed in the openings, substantially planarizing a surface of the substrate. A scattering method is applied to the substrate with the material layers for critical dimension (CD) or profile measurement.
    Type: Application
    Filed: September 24, 2004
    Publication date: April 6, 2006
    Inventors: Jyu-Horng Shieh, Wen-Chih Chiou, Peng-Fu Hsu, Baw-Ching Perng, Hun-Jan Tao, Chin-Jen Chen
  • Publication number: 20060063386
    Abstract: A plasma processing operation uses a gas mixture of N2 and H2 to both remove a photoresist film and treat a low-k dielectric material. The plasma processing operation prevents degradation of the low-k material by forming a protective layer on the low-k dielectric material. Carbon from the photoresist layer is activated and caused to complex with the low-k dielectric, maintaining a suitably high carbon content and a suitably low dielectric constant. The plasma processing operation uses a gas mixture with H2 constituting at least 10%, by volume, of the gas mixture.
    Type: Application
    Filed: September 23, 2004
    Publication date: March 23, 2006
    Inventors: Jang-Shiang Tsai, Yi-Nien Su, Chung-Chi Ko, Jyu-Horng Shieh, Peng-Fu Hsu, Hun-Jan Tao
  • Publication number: 20060054597
    Abstract: A wet etchant solution composition and method for etching oxides of hafnium and zirconium including at least one solvent present at greater than about 50 weight percent with respect to an arbitrary volume of the wet etchant solution; at least one chelating agent present at about 0.1 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution; and, at least one halogen containing acid present from about 0.0001 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution.
    Type: Application
    Filed: September 20, 2005
    Publication date: March 16, 2006
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Baw-Ching Perng, Fang-Cheng Chen, Hun-Jan Tao, Peng-Fu Hsu, Yue-Ho Hsieh, Chih-Cheng Wang, Shih-Yi Hsiao
  • Patent number: 7012027
    Abstract: A method is described for selectively etching a high k dielectric layer that is preferably a hafnium or zirconium oxide, silicate, nitride, or oxynitride with a selectivity of greater than 2:1 relative to silicon oxide, polysilicon, or silicon. The plasma etch chemistry is comprised of one or more halogen containing gases such as CF4, CHF3, CH2F2, CH3F, C4F8, C4F6, C5F6, BCl3, Br2, HF, HCl, HBr, HI, and NF3 and leaves no etch residues. An inert gas or an inert gas and oxidant gas may be added to the halogen containing gas. In one embodiment, a high k gate dielectric layer is removed on portions of an active area in a MOS transistor. Alternatively, the high k dielectric layer is used in a capacitor between two conducting layers and is selectively removed from portions of an ILD layer.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: March 14, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Baw-Ching Perng, Yuan-Hung Chiu, Mei-Hui Sung, Peng-Fu Hsu
  • Patent number: 6969688
    Abstract: A wet etchant solution composition and method for etching oxides of hafnium and zirconium including at least one solvent present at greater than about 50 weight percent with respect to an arbitrary volume of the wet etchant solution; at least one chelating agent present at about 0.1 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution; and, at least one halogen containing acid present from about 0.0001 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: November 29, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Baw-Ching Perng, Fang-Cheng Chen, Hun-Jan Tao, Peng-Fu Hsu, Yue-Ho Hsieh, Chih-Cheng Wang, Shih-Yi Hsiao
  • Publication number: 20050245082
    Abstract: A method for removing organic material from an opening in a low k dielectric layer and above a metal layer on a substrate is disclosed. An ozone water solution comprised of one or more additives such as hydroxylamine or an ammonium salt is applied as a spray or by immersion. A chelating agent may be added to protect the metal layer from oxidation. A diketone may be added to the ozone water solution or applied in a gas or liquid phase in a subsequent step to remove any metal oxide that forms during the ozone treatment. A supercritical fluid mixture that includes CO2 and ozone can be used to remove organic residues that are not easily stripped by one of the aforementioned liquid solutions. The removal method prevents changes in the dielectric constant and refractive index of the low k dielectric layer and cleanly removes residues which improve device performance.
    Type: Application
    Filed: April 28, 2004
    Publication date: November 3, 2005
    Inventors: Baw-Ching Perng, Yi-Chen Huang, Jun-Lung Huang, Bor-Wen Chan, Peng-Fu Hsu, Hsin-Ching Shih, Lawrance Sheu, Hun-Jan Tao
  • Publication number: 20050164479
    Abstract: A method is described for selectively etching a high k dielectric layer that is preferably a hafnium or zirconium oxide, silicate, nitride, or oxynitride with a selectivity of greater than 2:1 relative to silicon oxide, polysilicon, or silicon. The plasma etch chemistry is comprised of one or more halogen containing gases such as CF4, CHF3, CH2F2, CH3F, C4F8, C4F6, C5F6, BCl3, Br2, HF, HCl, HBr, HI, and NF3 and leaves no etch residues. An inert gas or an inert gas and oxidant gas may be added to the halogen containing gas. In one embodiment, a high k gate dielectric layer is removed on portions of an active area in a MOS transistor. Alternatively, the high k dielectric layer is used in a capacitor between two conducting layers and is selectively removed from portions of an ILD layer.
    Type: Application
    Filed: January 27, 2004
    Publication date: July 28, 2005
    Inventors: Baw-Ching Perng, Yuan-Hung Chiu, Mei-Hui Sung, Peng-Fu Hsu
  • Patent number: 6864193
    Abstract: A composition and method for fabricating a semiconductor wafer containing copper is disclosed, which method includes plasma etching a dielectric layer from the surface of the wafer, plasma ashing a resist from the surface of the wafer, and cleaning the wafer surface by contacting same with a cleaning formulation, which includes the following components and their percentage by weight ranges shown: (a) from about 0.01 to 80% by weight organic solvent, (b) from about 0.01 to 30% by weight copper chelating agent, (c) from about 0.01 to 10% by weight copper inhibitor, and (d) from about 0.01 to 70% by weight water.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: March 8, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Li Chou, Hun-Jan Tao, Peng-Fu Hsu
  • Publication number: 20050010000
    Abstract: Low-k organosilicate dielectric material can be exposed to a series of reagents, including a halogenation reagent, an alkylation reagent, and a termination reagent, in order to reverse degradation of dielectric properties caused by previous processing steps.
    Type: Application
    Filed: July 9, 2003
    Publication date: January 13, 2005
    Inventors: Peng-Fu Hsu, Jyu-Horng Shieh, Yung-Cheng Lu, Hun-Jan Tao, Yuan-Hung Chiu
  • Patent number: 6838381
    Abstract: A method of manufacturing a semiconductor device is provided. A nickel silicide layer (e.g., NiSi) is formed on a substrate. Next, a hydrogen plasma treatment may be performed on the silicide layer, which may induce the formation of metal/silicon hydride bonds in the silicide layer. An etch stop layer is formed over the silicide layer. A dielectric layer is formed over the etch stop layer. An opening is formed in the dielectric layer. A portion of the etch stop layer is etched away at the opening to expose at least a portion of the silicide layer therebeneath. The etch chemistry mixture used during the etching step preferably includes hydrogen gas. The change in sheet resistance for the exposed silicide layer portion at the opening after the etching step, as compared to before the etching step, is preferably not greater than about 0.10 ohms/square.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: January 4, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Peng-Fu Hsu, Ming-Huan Tsai, Baw-Ching Perng, Ju-Wang Hsu, Yaun-Hung Chiu
  • Publication number: 20040187891
    Abstract: A cavitation cleaning system and method for using the same to remove particulate contamination from a substrate including providing at least one substrate immersed in a cleaning solution said cleaning solution contained in a cleaning solution container. The container further includes means for producing gaseous cavitation bubbles of ultrasound energy, said gaseous cavitation bubbles arranged to contact at least a portion of the at least one substrate; applying ultrasound energy to create gaseous cavitation bubbles to contact the substrate to remove adhering residual particles in a substrate surface cleaning process; and, recirculating the cleaning solution through a particulate filtering means.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Li Chou, Hun-Jan Tao, Peng-Fu Hsu
  • Publication number: 20040175964
    Abstract: A composition and method for fabricating a semiconductor wafer containing copper is disclosed, which method includes plasma etching a dielectric layer from the surface of the wafer, plasma ashing a resist from the surface of the wafer, and cleaning the wafer surface by contacting same with a cleaning formulation, which includes the following components and their percentage by weight ranges shown: (a) from about 0.01 to 80% by weight organic solvent, (b) from about 0.01 to 30% by weight copper chelating agent, (c) from about 0.01 to 10% by weight copper inhibitor, and (d) from about 0.01 to 70% by weight water.
    Type: Application
    Filed: March 5, 2003
    Publication date: September 9, 2004
    Inventors: Chun-Li Chou, Hun-Jan Tao, Peng-Fu Hsu
  • Publication number: 20040127026
    Abstract: A method of manufacturing a semiconductor device is provided. A nickel silicide layer (e.g., NiSi) is formed on a substrate. Next, a hydrogen plasma treatment may be performed on the silicide layer, which may induce the formation of metal/silicon hydride bonds in the silicide layer. An etch stop layer is formed over the silicide layer. A dielectric layer is formed over the etch stop layer. An opening is formed in the dielectric layer. A portion of the etch stop layer is etched away at the opening to expose at least a portion of the suicide layer therebeneath. The etch chemistry mixture used during the etching step preferably includes hydrogen gas. The change in sheet resistance for the exposed silicide layer portion at the opening after the etching step, as compared to before the etching step, is preferably not greater than about 0.10 ohms/square.
    Type: Application
    Filed: December 26, 2002
    Publication date: July 1, 2004
    Inventors: Peng-Fu Hsu, Ming-Huan Tsai, Baw-Ching Perng, Ju-Wang Hsu, Yaun-Hung Chiu
  • Publication number: 20040067657
    Abstract: A wet etchant solution composition and method for etching oxides of hafnium and zirconium including at least one solvent present at greater than about 50 weight percent with respect to an arbitrary volume of the wet etchant solution; at least one chelating agent present at about 0.1 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution; and, at least one halogen containing acid present from about 0.0001 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution.
    Type: Application
    Filed: October 8, 2002
    Publication date: April 8, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Baw-Ching Perng, Fang-Cheng Chen, Hun-Jan Tao, Peng-Fu Hsu, Yue-Ho Hsieh, Chih-Cheng Wang, Shih-Yi Hsiao
  • Patent number: 6706640
    Abstract: A plasma etch method for etching a dielectric layer and an etch stop layer to reach a metal silicide layer formed thereunder employs for etching the etch stop layer an etchant gas composition comprising a fluorine containing gas and a nitrogen containing gas, preferably with a carrier gas such as argon or helium, but without an oxygen containing gas or a carbon and oxygen containing gas. The plasma etch method is selective for the etch stop layer with respect to the metal silicide layer, thus maintaining the physical and electrical integrity of the metal silicide layer.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 16, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Ming-Huan Tsai, Ju-Wang Hsu, Peng-Fu Hsu, Hun-Jan Tao