Patents by Inventor Peter Brix

Peter Brix has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10988408
    Abstract: A conversion material for a white or colored light source is provided. The material includes a matrix glass that, as bulk material, for a thickness of about 1 mm, has a pure transmission of greater than 80% in the wavelength region from 350 to 800 nm and in the region in which the primary light source emits light, wherein the sum of transmission and reflection of the sintered matrix glass without luminophore is at least greater than 80% in the spectral region from 350 nm to 800 nm and in the spectral region in which the primary light source emits light.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: April 27, 2021
    Assignee: SCHOTT AG
    Inventors: Rainer Liebald, Claudia Stolz, Peter Brix, Simone Monika Ritter, Peter Nass, Dieter Goedeke, Sabine Pichler-Wilhelm, Sabrina Wimmer
  • Patent number: 10343946
    Abstract: Glass sheets with high refractive indexes (nd), layer composite assemblies including the glass sheets, methods for manufacturing the glass sheets, and methods of using the glass sheets are all provided. The glass sheets can be processed in a glass sheet manufacturing process and nevertheless have the optical properties of a classical optical glass. The glass sheets of the are highly transparent, resistant to crystallization, chemically resistant and highly refractive. The glass sheets have a viscosity-temperature behavior that is adapted to the manufacturing procedure with glass sheet manufacturing processes.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: July 9, 2019
    Assignee: SCHOTT AG
    Inventors: Silke Wolff, Simone Ritter, Gunther Paulus, Ute Wölfel, Peter Brix
  • Patent number: 10308545
    Abstract: Glass sheets with high refractive indexes (nd), layer composite assemblies including the glass sheets, methods for manufacturing the glass sheets, and methods of using the glass sheets are all provided. The glass sheets can be processed in a glass sheet manufacturing process and nevertheless have the optical properties of a classical optical glass. The glass sheets of the are highly transparent, resistant to crystallization, chemically resistant and highly refractive. The glass sheets have a viscosity-temperature behavior that is adapted to the manufacturing procedure with glass sheet manufacturing processes.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 4, 2019
    Assignee: SCHOTT AG
    Inventors: Silke Wolff, Simone Ritter, Gunther Paulus, Ute Wölfel, Peter Brix
  • Publication number: 20180194673
    Abstract: A conversion material for a white or colored light source is provided. The material includes a matrix glass that, as bulk material, for a thickness of about 1 mm, has a pure transmission of greater than 80% in the wavelength region from 350 to 800 nm and in the region in which the primary light source emits light, wherein the sum of transmission and reflection of the sintered matrix glass without luminophore is at least greater than 80% in the spectral region from 350 nm to 800 nm and in the spectral region in which the primary light source emits light.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Applicant: SCHOTT AG
    Inventors: Rainer Liebald, Claudia Stolz, Peter Brix, Simone Monika Ritter, Peter Nass, Dieter Goedeke, Sabine Pichler-Wilhelm, Sabrina Wimmer
  • Patent number: 9982878
    Abstract: An assembly is provided that includes a ceramic converter for converting light having a first wavelength into light having a second wavelength, a metal-containing reflective coating, and a cooling element. The surface of the ceramic converter is at least partly coated with the metal-containing reflective coating. The coating dissipates the heat from the converter into the cooling element. The cooling element and the metal-containing reflective coating are connected to one another by a metallic solder connection.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: May 29, 2018
    Assignee: Schott AG
    Inventors: Urban Weber, Volker Hagemann, Peter Brix, Michael Kluge
  • Patent number: 9950949
    Abstract: The invention relates to a conversion material, in particular for a white or colored light source comprising a semiconductor light source as primary light source, comprising a matrix glass that, as bulk material, for a thickness d of about 1 mm, has a pure transmission ?i of greater than 80% in the wavelength region from 350 to 800 nm and in the region in which the primary light source emits light, wherein the sum of transmission and reflection of the sintered matrix glass without luminophore is at least greater than 80% in the spectral region from 350 nm to 800 nm and in the spectral region in which the primary light source emits light.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: April 24, 2018
    Assignee: SCHOTT AG
    Inventors: Rainer Liebald, Claudia Stolz, Peter Brix, Simone Monika Ritter, Peter Nass, Dieter Goedeke, Sabine Pichler-Wilhelm, Sabrina Wimmer
  • Publication number: 20160245494
    Abstract: An assembly is provided that includes a ceramic converter for converting light having a first wavelength into light having a second wavelength, a metal-containing reflective coating, and a cooling element. The surface of the ceramic converter is at least partly coated with the metal-containing reflective coating. The coating dissipates the heat from the converter into the cooling element. The cooling element and the metal-containing reflective coating are connected to one another by a metallic solder connection.
    Type: Application
    Filed: February 11, 2016
    Publication date: August 25, 2016
    Applicant: SCHOTT AG
    Inventors: Urban WEBER, Volker HAGEMANN, Peter BRIX, Michael KLUGE
  • Patent number: 9133053
    Abstract: A crystallizing glass solder for high-temperature applications, which is free of PbO and contains, in % by weight on an oxide basis: 45% to 60% of BaO; 25% to 40% of SiO2; 5% to 15% of B2O3; 0 to <2% of Al2O3; 2 to 7.0, preferably 4.4 to 7.0%, of MgO; and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 2% to 15%. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: September 15, 2015
    Assignee: SCHOTT AG
    Inventors: Dieter Goedeke, Peter Brix, Olaf Claussen, Joern Besinger, Bastian Schoen
  • Patent number: 9096460
    Abstract: A lithium aluminosilicate glass and a method for producing such lithium aluminosilicate glass are provided. The glass has a composition, in mol %, of: SiO2 60-70; Al2O3 10-13; B2O3 0.0-0.9; Li2O 9.6-11.6; Na2O 8.2-less than 10; K2O 0.0-0.7; MgO 0.0-0.2; CaO 0.2-2.3; ZnO 0.0-0.4; ZrO2 1.3-2.6; P2O5 0.0-0.5; Fe2O3 0.003-0.100; SnO2 0.0-0.3; and CeO2 0.004-0.200. Further, the composition complies with the following relations and conditions: (Li2O+Al2O3)/(Na2O+K2O) greater than 2; Li2O/(Li2O+Na2O+K2O) greater than 0.47 and less than 0.70; CaO+Fe2O3+ZnO+P2O5+B2O3+CeO2 greater that 0.8 and less than 3, where at least four out of the six oxides are included. The glass exhibits a modulus of elasticity of at least 82 GPa and has a glass transition point below 540° C. and/or a working point below 1150° C.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 4, 2015
    Assignee: SCHOTT AG
    Inventors: Peter Brix, Wolfram Beier, Jochen Alkemper
  • Patent number: 9096461
    Abstract: Universal glasses are provided which have the composition, in percent by weight on an oxide basis, 65-75 of SiO2, 11-18 of Al2O3, 5-10 of MgO, 5-10 of CaO, which are free of B2O3, SrO, BaO, CeO2 and PbO and have a hydrolytic resistance in the first class in accordance with DIN ISO 719, an acid resistance at least in the second class in accordance with DIN 12116 and an alkali resistance at least in the second class in accordance with DIN ISO 695.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: August 4, 2015
    Assignee: SCHOTT AG
    Inventor: Peter Brix
  • Publication number: 20140179507
    Abstract: A crystallizing glass solder for high-temperature applications, which is free of PbO and contains, in % by weight on an oxide basis: 45% to 60% of BaO; 25% to 40% of SiO2; 5% to 15% of B2O3; 0 to <2% of Al2O3; 2 to 7.0, preferably 4.4 to 7.0%, of MgO; and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 2% to 15%. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Application
    Filed: December 26, 2013
    Publication date: June 26, 2014
    Applicant: SCHOTT AG
    Inventors: DIETER GOEDEKE, PETER BRIX, OLAF CLAUSSEN, JOERN BESINGER, BASTIAN SCHOEN
  • Patent number: 8664134
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 4, 2014
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Peter Brix, Olaf Claussen, Joern Besinger, Bastian Schoen
  • Patent number: 8658549
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: February 25, 2014
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Peter Brix, Olaf Claussen, Joern Besinger, Bastian Schoen
  • Patent number: 8629072
    Abstract: The invention discloses boron-free neutral glasses having the composition (in % by weight, based on oxide) 65-72 SiO2, 11-17 Al2O3, 0.1-8 Na2O, 3-8 MgO, 4-12 CaO and 0-10 ZnO, a ratio CaO/MgO of 1.4 to 1.6, and having a hydrolytic resistance in accordance with DIN ISO 719 in class 1 and an acid resistance in accordance with DIN 12116 and an alkali resistance in accordance with DIN ISO 695 at least in class 2.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: January 14, 2014
    Assignee: Schott AG
    Inventor: Peter Brix
  • Publication number: 20140005027
    Abstract: Universal glasses are provided which have the composition, in percent by weight on an oxide basis, 65-75 of SiO2, 11-18 of Al2O3, 5-10 of MgO, 5-10 of CaO, which are free of B2O3, SrO, BaO, CeO2 and PbO and have a hydrolytic resistance in the first class in accordance with DIN ISO 719, an acid resistance at least in the second class in accordance with DIN 12116 and an alkali resistance at least in the second class in accordance with DIN ISO 695.
    Type: Application
    Filed: June 10, 2013
    Publication date: January 2, 2014
    Inventor: Peter BRIX
  • Publication number: 20130276880
    Abstract: Transparent layer composite assemblies are provided that are suitable for use in solar modules and light emitting diodes, as well as methods for producing such layer composite assemblies and to the uses thereof. The layer composite assemblies have substrate materials that make it possible to increase the luminous efficiency of light emitting diodes and the efficiency of solar modules.
    Type: Application
    Filed: October 25, 2011
    Publication date: October 24, 2013
    Applicant: SCHOTT AG
    Inventors: Silke Wolff, Ute Wolfel, Simone Ritter, Peter Brix
  • Publication number: 20130186140
    Abstract: A lithium aluminosilicate glass and a method for producing such lithium aluminosilicate glass are provided. The glass has a composition, in mol %, of: SiO2 60-70; Al2O3 10-13; B2O3 0.0-0.9; Li2O 9.6-11.6; Na2O 8.2-less than 10; K2O 0.0-0.7; MgO 0.0-0.2; CaO 0.2-2.3; ZnO 0.0-0.4; ZrO2 1.3-2.6; P2O5 0.0-0.5; Fe2O3 0.003-0.100; SnO2 0.0-0.3; and CeO2 0.004-0.200. Further, the composition complies with the following relations and conditions: (Li2O+Al2O3)/(Na2O+K2O) greater than 2; Li2O/(Li2O+Na2O+K2O) greater than 0.47 and less than 0.70; CaO+Fe2O3+ZnO+P2O5+B2O3+CeO2 greater that 0.8 and less than 3, where at least four out of the six oxides are included. The glass exhibits a modulus of elasticity of at least 82 GPa and has a glass transition point below 540° C. and/or a working point below 1150° C.
    Type: Application
    Filed: February 25, 2011
    Publication date: July 25, 2013
    Applicant: SCHOTT AG
    Inventors: Peter Brix, Wolfram Beier, Jochen Alkemper
  • Patent number: 8163392
    Abstract: The method for producing glass-coated electronic components includes processing a lead-free glass with a liquid to form a suspension, applying the suspension on an electronic component body and subsequently sintering the component body with the suspension on it. The lead-free glass contains, in % by weight, SiO2, 3-12; B2O3, 15-<25; Al2O3, 0-6; Cs2O, 0-5; MgO, 0-5; BaO, 0-5; Bi2O3, 0-5; CeO2, 0.01-1; MoO3, 0-1; Sb2O3, 0-2 and ZnO, 50-65. The method can be used to passivate electronic components.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 24, 2012
    Assignee: Schott AG
    Inventors: Joern Besinger, Peter Brix, Oliver Fritz
  • Publication number: 20120065049
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 15, 2012
    Inventors: Dieter GOEDEKE, Peter BRIX, Olaf CLAUSSEN, Joern BESINGER, Bastian SCHOEN
  • Publication number: 20120057337
    Abstract: The invention relates to a conversion material, in particular for a white or colored light source comprising a semiconductor light source as primary light source, comprising a matrix glass that, as bulk material, for a thickness d of about 1 mm, has a pure transmission ?i of greater than 80% in the wavelength region from 350 to 800 nm and in the region in which the primary light source emits light, wherein the sum of transmission and reflection of the sintered matrix glass without luminophore is at least greater than 80% in the spectral region from 350 nm to 800 nm and in the spectral region in which the primary light source emits light.
    Type: Application
    Filed: April 29, 2009
    Publication date: March 8, 2012
    Inventors: Rainer Liebald, Claudia Stolz, Peter Brix, Simone Monika Ritter, Peter Nass, Dieter Goedeke, Sabine Pichler-Wilhelm, Sabrina Wimmer