Patents by Inventor Peter Javorka

Peter Javorka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11387364
    Abstract: A transistor includes a semiconductor substrate, a first source/drain region and a second source/drain region in the semiconductor substrate with a channel region between the source/drain regions, and a gate over the channel region. In addition, the transistor includes a first phase transition material (PTM) region between the first source/drain region and the channel region, and a second PTM region between the second source/drain region and the channel region. The PTM regions provide the transistor with improved off-state current (IOFF) without affecting the on-state current (ION), and thus an improved ION/IOFF ratio. The transition threshold of PTM regions from dielectric to conductor can be customized based on, for example, PTM material type, doping therein, and/or strain therein.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: July 12, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Avinash Lahgere, Prashanth Paramahans Manik, Peter Javorka, Ali Icel, Mohit Bajaj
  • Publication number: 20220140131
    Abstract: A transistor includes a semiconductor substrate, a first source/drain region and a second source/drain region in the semiconductor substrate with a channel region between the source/drain regions, and a gate over the channel region. In addition, the transistor includes a first phase transition material (PTM) region between the first source/drain region and the channel region, and a second PTM region between the second source/drain region and the channel region. The PTM regions provide the transistor with improved off-state current (IOFF) without affecting the on-state current (ION), and thus an improved ION/IOFF ratio. The transition threshold of PTM regions from dielectric to conductor can be customized based on, for example, PTM material type, doping therein, and/or strain therein.
    Type: Application
    Filed: November 3, 2020
    Publication date: May 5, 2022
    Inventors: Avinash Lahgere, Prashanth Paramahans Manik, Peter Javorka, Ali Icel, Mohit Bajaj
  • Patent number: 10643885
    Abstract: Methods of locally changing the BOX layer of a MOSFET device to a high-k layer to provide different Vts with one backside voltage and the resulting device are provided. Embodiments include providing a Si substrate having a BOX layer formed over the substrate and a SOI layer formed over the BOX layer; implanting a high current of dopants into at least one portion of the BOX layer; performing a high-temperature anneal of the BOX layer; forming first and second fully depleted silicon-on-insulator (FDSOI) transistors on the SOI layer, the first FDSOI transistors formed above either the BOX layer or the at least one portion of the BOX layer and the second FDSOI transistors formed above the at least one portion of the BOX layer; and applying a single voltage across a backside of the Si substrate.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: May 5, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Philipp Steinmann, Peter Javorka
  • Patent number: 10340380
    Abstract: A semiconductor device includes a plurality of spaced apart fins, a dielectric material layer positioned between each of the plurality of spaced apart fins, and a common gate structure positioned above the dielectric material layer and extending across the fins. A continuous merged semiconductor material region is positioned on each of the fins and above the dielectric material layer, is laterally spaced apart from the common gate structure, extends between and physically contacts the fins, has a first sidewall surface that faces toward the common gate structure, and has a second sidewall surface that is opposite of the first sidewall surface and faces away from the common gate structure. A stress-inducing material is positioned in a space defined by at least the first sidewall surface, opposing sidewall surfaces of an adjacent pair of fins, and an upper surface of the dielectric material layer.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: July 2, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stefan Flachowsky, Jan Hoentschel, Ralf Richter, Peter Javorka
  • Publication number: 20180323099
    Abstract: Methods of locally changing the BOX layer of a MOSFET device to a high-k layer to provide different Vts with one backside voltage and the resulting device are provided. Embodiments include providing a Si substrate having a BOX layer formed over the substrate and a SOI layer formed over the BOX layer; implanting a high current of dopants into at least one portion of the BOX layer; performing a high-temperature anneal of the BOX layer; forming first and second fully depleted silicon-on-insulator (FDSOI) transistors on the SOI layer, the first FDSOI transistors formed above either the BOX layer or the at least one portion of the BOX layer and the second FDSOI transistors formed above the at least one portion of the BOX layer; and applying a single voltage across a backside of the Si substrate.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 8, 2018
    Inventors: Philipp STEINMANN, Peter JAVORKA
  • Patent number: 10049917
    Abstract: Methods of locally changing the BOX layer of a MOSFET device to a high-k layer to provide different Vts with one backside voltage and the resulting device are provided. Embodiments include providing a Si substrate having a BOX layer formed over the substrate and a SOI layer formed over the BOX layer; implanting a high current of dopants into at least one portion of the BOX layer; performing a high-temperature anneal of the BOX layer; forming first and second fully depleted silicon-on-insulator (FDSOI) transistors on the SOI layer, the first FDSOI transistors formed above either the BOX layer or the at least one portion of the BOX layer and the second FDSOI transistors formed above the at least one portion of the BOX layer; and applying a single voltage across a backside of the Si substrate.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 14, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Philipp Steinmann, Peter Javorka
  • Publication number: 20180082889
    Abstract: Methods of locally changing the BOX layer of a MOSFET device to a high-k layer to provide different Vts with one backside voltage and the resulting device are provided. Embodiments include providing a Si substrate having a BOX layer formed over the substrate and a SOI layer formed over the BOX layer; implanting a high current of dopants into at least one portion of the BOX layer; performing a high-temperature anneal of the BOX layer; forming first and second fully depleted silicon-on-insulator (FDSOI) transistors on the SOI layer, the first FDSOI transistors formed above either the BOX layer or the at least one portion of the BOX layer and the second FDSOI transistors formed above the at least one portion of the BOX layer; and applying a single voltage across a backside of the Si substrate.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 22, 2018
    Inventors: Philipp STEINMANN, Peter JAVORKA
  • Publication number: 20180053829
    Abstract: A method of forming a semiconductor device is provided, wherein the method includes forming a shaped gate structure over an active region, the shaped gate structure comprising a gate dielectric layer and a gate electrode disposed on the gate dielectric layer, and forming raised source/drain regions adjacent to the gate structure, the raised source/drain regions being formed at opposing sides of the shaped gate structure relative to a length direction of the shaped gate structure, wherein the gate electrode has a tapering shape according to which a dimension of the gate electrode along the length direction varies from a maximum value at a lower portion of the gate electrode close to the gate dielectric layer towards a minimal value at a top portion of the gate electrode.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 22, 2018
    Inventors: Elliot John Smith, Sylvain Henri Baudot, Peter Javorka, Gerd Zschaetzsch
  • Patent number: 9876111
    Abstract: A method of forming a semiconductor device structure is disclosed including providing a first active region and a second active region in an upper surface portion of a substrate, the first and second active regions being laterally separated by at least one isolation structure, forming a first gate structure comprising a first gate dielectric and a first gate electrode material over the first active region, and a second gate structure comprising a second gate dielectric and a second gate electrode material over the second active region, wherein a thickness of the second gate dielectric is greater than the thickness of the first gate dielectric, and forming a first sidewall spacer structure to the first gate structure and a second sidewall spacer structure to the second gate structure, wherein a lateral thickness of the second sidewall spacer structure is greater than a lateral thickness of the first sidewall spacer structure.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: January 23, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Steffen Sichler, Peter Javorka, Juergen Faul, Sylvain Henri Baudot, Thorsten Kammler
  • Publication number: 20170338343
    Abstract: A semiconductor device is provided comprising a silicon-on-insulator (SOI) substrate comprising a semiconductor bulk substrate, a buried oxide layer formed on the semiconductor bulk substrate and a semiconductor layer formed on the buried oxide layer and a transistor device, wherein the transistor device comprises a gate electrode formed by a part of the semiconductor bulk substrate, a gate insulation layer formed by a part of the buried oxide layer and a channel region formed in a part of the semiconductor layer.
    Type: Application
    Filed: May 23, 2016
    Publication date: November 23, 2017
    Inventors: Sylvain Henri Baudot, Gunter Grasshoff, Juergen Faul, Peter Javorka
  • Publication number: 20170170317
    Abstract: A method of forming a semiconductor device structure is disclosed including providing a first active region and a second active region in an upper surface portion of a substrate, the first and second active regions being laterally separated by at least one isolation structure, forming a first gate structure comprising a first gate dielectric and a first gate electrode material over the first active region, and a second gate structure comprising a second gate dielectric and a second gate electrode material over the second active region, wherein a thickness of the second gate dielectric is greater than the thickness of the first gate dielectric, and forming a first sidewall spacer structure to the first gate structure and a second sidewall spacer structure to the second gate structure, wherein a lateral thickness of the second sidewall spacer structure is greater than a lateral thickness of the first sidewall spacer structure.
    Type: Application
    Filed: April 5, 2016
    Publication date: June 15, 2017
    Inventors: Steffen Sichler, Peter Javorka, Juergen Faul, Sylvain Henri Baudot, Thorsten Kammler
  • Patent number: 9484459
    Abstract: A semiconductor device includes drain and source regions positioned in an active region of a transistor and a channel region positioned laterally between the drain and source regions that includes a semiconductor base material and a threshold voltage adjusting semiconductor material positioned on the semiconductor base material. A gate electrode structure is positioned on the threshold voltage adjusting semiconductor material, and a strain-inducing semiconductor alloy including a first semiconductor material and a second semiconductor material positioned above the first semiconductor material is embedded in the semiconductor base material of the active region.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: November 1, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Javorka, Stephan Kronholz, Gunda Beernink
  • Publication number: 20160315162
    Abstract: A semiconductor device structure includes an active region positioned in a semiconductor substrate and a gate structure of a transistor positioned above the active region. The gate structure includes a gate insulating layer, a gate metal layer positioned above the gate insulating layer and a trimmed gate electrode material layer positioned above the gate metal layer. A length of at least a portion of the trimmed gate electrode material layer in a gate length direction of the transistor is less than a length of at least the gate metal layer in the gate length direction.
    Type: Application
    Filed: July 5, 2016
    Publication date: October 27, 2016
    Inventors: Ralf Richter, Peter Javorka, Jan Hoentschel, Stefan Flachowsky
  • Patent number: 9472642
    Abstract: The present disclosure provides in one aspect for a semiconductor device structure which may be formed by providing source/drain regions within a semiconductor substrate in alignment with a gate structure formed over the semiconductor substrate, wherein the gate structure has a gate electrode structure, a first sidewall spacer and a second sidewall spacer, the first sidewall spacer covering sidewall surfaces of the gate electrode structure and the sidewall spacer being formed on the first sidewall spacer. Furthermore, forming the semiconductor device structure may include removing the second sidewall spacer so as to expose the first sidewall spacer, forming a third sidewall spacer on a portion of the first sidewall spacer such that the first sidewall spacer is partially exposed, and forming silicide regions in alignment with the third sidewall spacer in the source/drain regions.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: October 18, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Stefan Flachowsky, Ralf Richter, Peter Javorka
  • Publication number: 20160300928
    Abstract: A method of manufacturing a semiconductor device is provided including forming replacement gates over a semiconductor layer, forming sidewall spacers at sidewalls of the replacement gates, forming a dielectric layer in interspaces between the sidewall spacers of neighboring replacement gates, removing the replacement gates and sidewall spacers to form openings in the dielectric layer, and forming gate electrodes in the openings.
    Type: Application
    Filed: April 13, 2015
    Publication date: October 13, 2016
    Inventors: Jan Hoentschel, Stefan Flachowsky, Peter Javorka, Ralf Richter
  • Publication number: 20160276428
    Abstract: A semiconductor device is provided including a substrate, a buried oxide layer formed over the substrate, a semiconductor layer formed over the buried oxide layer, and a transistor device including a gate electrode, a gate insulation layer and a channel region, wherein the gate insulation layer comprises a part of the buried oxide layer.
    Type: Application
    Filed: March 16, 2015
    Publication date: September 22, 2016
    Inventors: Juergen Faul, Peter Javorka
  • Publication number: 20160268426
    Abstract: A semiconductor device includes a plurality of spaced apart fins, a dielectric material layer positioned between each of the plurality of spaced apart fins, and a common gate structure positioned above the dielectric material layer and extending across the fins. A continuous merged semiconductor material region is positioned on each of the fins and above the dielectric material layer, is laterally spaced apart from the common gate structure, extends between and physically contacts the fins, has a first sidewall surface that faces toward the common gate structure, and has a second sidewall surface that is opposite of the first sidewall surface and faces away from the common gate structure. A stress-inducing material is positioned in a space defined by at least the first sidewall surface, opposing sidewall surfaces of an adjacent pair of fins, and an upper surface of the dielectric material layer.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Stefan Flachowsky, Jan Hoentschel, Ralf Richter, Peter Javorka
  • Publication number: 20160233318
    Abstract: The present disclosure provides a method of forming a semiconductor device and a semiconductor device. An SOI substrate portion having a semiconductor layer, a buried insulating material layer and a bulk substrate is provided, wherein the buried insulating material layer is interposed between the semiconductor layer and the bulk substrate. The SOI substrate portion is subsequently patterned so as to form a patterned bi-layer stack on the bulk substrate, which bi-layer stack comprises a patterned semiconductor layer and a patterned buried insulating material layer. The bi-layer stack is further enclosed with a further insulating material layer and an electrode material is formed on and around the further insulating material layer. Herein a gate electrode is formed by the bulk substrate and the electrode material such that the gate electrode substantially surrounds a channel portion formed by a portion of the patterned buried insulating material layer.
    Type: Application
    Filed: February 6, 2015
    Publication date: August 11, 2016
    Inventors: Ralf Richter, Peter Javorka, Jan Hoentschel, Stefan Flachowsky
  • Patent number: 9412848
    Abstract: The present disclosure provides a method of forming a semiconductor device and a semiconductor device. An SOI substrate portion having a semiconductor layer, a buried insulating material layer and a bulk substrate is provided, wherein the buried insulating material layer is interposed between the semiconductor layer and the bulk substrate. The SOI substrate portion is subsequently patterned so as to form a patterned bi-layer stack on the bulk substrate, which bi-layer stack comprises a patterned semiconductor layer and a patterned buried insulating material layer. The bi-layer stack is further enclosed with a further insulating material layer and an electrode material is formed on and around the further insulating material layer. Herein a gate electrode is formed by the bulk substrate and the electrode material such that the gate electrode substantially surrounds a channel portion formed by a portion of the patterned buried insulating material layer.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ralf Richter, Peter Javorka, Jan Hoentschel, Stefan Flachowsky
  • Patent number: 9412859
    Abstract: Methods for forming a semiconductor device are provided. In one embodiment, a gate structure having a gate insulating layer and a gate electrode structure formed on the gate insulating layer is provided. The methods provide reducing a dimension of the gate electrode structure relative to the gate insulating layer along a direction extending in parallel to a direction connecting the source and drain. A semiconductor device structure having a gate structure including a gate insulating layer and a gate electrode structure formed above the gate insulating layer is provided, wherein a dimension of the gate electrode structure extending along a direction which is substantially parallel to a direction being oriented from source to drain is reduced relative to a dimension of the gate insulating layer. According to some examples, gate structures are provided having a gate silicon length which is decoupled from the channel width induced by the gate structure.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ralf Richter, Peter Javorka, Jan Hoentschel, Stefan Flachowsky