Patents by Inventor Peter Joseph Lezzi

Peter Joseph Lezzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230143992
    Abstract: A glass composition includes: greater than or equal to 56 mol % to less than or equal to 70 mol % SiO2; greater than or equal to 12 mol % to less than or equal to 20 mol % Al2O3; greater than or equal to 0 mol % to less than or equal to 4 mol % P2O5; greater than or equal to 0 mol % to less than or equal to 8 mol % B2O3; greater than or equal to 6 mol % to less than or equal to 12 mol % Li2O; greater than or equal to 4 mol % to less than or equal to 12 mol % Na2O; greater than or equal to 0.4 mol % to less than or equal to 3 mol % K2O; greater than or equal to 2 mol % to less than or equal to 6 mol % MgO; greater than or equal to 0.25 mol % to less than or equal to 6 mol % CaO; greater than or equal to 0 mol % to less than or equal to 3 mol % SrO; greater than or equal to 0 mol % to less than or equal to 5 mol % ZnO; and greater than or equal to 0 mol % to less than or equal to 1 mol % ZrO2. The glass composition may have a fracture toughness of greater than or equal 0.75 MPa·m0.
    Type: Application
    Filed: November 9, 2022
    Publication date: May 11, 2023
    Inventors: Qiang Fu, Xiaoju Guo, Peter Joseph Lezzi, Charisse Marye Spier, Alana Marie Whittier
  • Patent number: 11643355
    Abstract: Embodiments of thermally and chemically strengthened glass-based articles are disclosed. In one or more embodiments, the glass-based articles may include a first surface and a second surface opposing the first surface defining a thickness (t), a first CS region comprising a concentration of a metal oxide that is both non-zero and varies along a portion of the thickness, and a second CS region being substantially free of the metal oxide of the first CS region, the second CS region extending from the first surface to a depth of compression of about 0.17•t or greater. In one or more embodiments, the first surface is flat to 100 ?m total indicator run-out (TIR) along any 50 mm or less profile of the first surface. Methods of strengthening glass sheets are also disclosed, along with consumer electronic products, laminates and vehicles including the same are also disclosed.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: May 9, 2023
    Assignee: Corning Incorporated
    Inventors: John Philip Finkeldey, Linda Gaskill, Timothy Michael Gross, Peter Joseph Lezzi, Richard Orr Maschmeyer, Charlene Marie Smith, John Christopher Thomas, Kevin Lee Wasson
  • Patent number: 11639310
    Abstract: Glass-based articles are provided that exhibit improved fracture resistance. The relationships between properties attributable to the glass composition and stress profile of the glass-based articles are provided that indicate improved fracture resistance.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: May 2, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Xiaoju Guo, Jennifer Lynn Hunt, Peter Joseph Lezzi, Rostislav Vatchev Roussev, Charlene Marie Smith, Ross Johnson Stewart
  • Publication number: 20230127596
    Abstract: A glass composition comprises: 50.0 mol % to 70.0 mol % SiO2; 10.0 mol % to 25.0 mol % Al2O3; 0.0 mol % to 5.0 mol % P2O3; 0.0 mol % to 10.0 mol % B2O3; 5.0 mol % to 15.0 mol % Li2O; 1.0 mol % to 15.0 mol % Na2O; and 0.0 mol % to 1.0 mol % K2O. The sum of all alkali oxides, R2O, present in the glass composition may be in the range from greater than or equal to 11.0 mol % to less than or equal to 23.0 mol %. The sum of Al2O3 and R2O present in the glass composition may be in the range from greater than or equal to 26.0 mol % to less than or equal to 40.0 mol %. The glass composition may satisfy the relationship ?0.1?(Al2O3—(R2O+RO))/Li2O?0.3.
    Type: Application
    Filed: December 18, 2022
    Publication date: April 27, 2023
    Inventors: Shuo Cui, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20230129031
    Abstract: In embodiments, a glass includes from 45 mol % to 70 mol % SiO2; from 11.5 mol % to 25 mol % Al2O3; from 2 mol % to 20 mol % Li2O; from greater than 0 mol % to 10 mol % Na2O; from 9 mol % to 19 mol % MgO; from 4 mol % ZrO2; and from 0 mol % to 0.5 mol % TiO2. In other embodiments, a glass includes from 45 mol % to 70 mol % SiO2; from 4 mol % to 25 mol % Al2O3; from 5 mol % to 20 mol % Li2O; from 0.1 mol % to 10 mol % Na2O; from 6 mol % to 25 mol % MgO; from 0.1 mol % to 4 mol % ZrO2; from 0.1 mol % to 5 mol % K2O; and from 0.05 mol % to 0.5 mol % SnO2.
    Type: Application
    Filed: October 25, 2022
    Publication date: April 27, 2023
    Inventors: George Halsey Beall, Qiang Fu, Xiaoju Guo, Peter Joseph Lezzi, Zhihao Liao, Pascale Oram, Charisse Marye Spier, Alana Marie Whittier
  • Publication number: 20230117763
    Abstract: Ion-exchanged alkali aluminosilicate glass articles with a ratio of peak compressive stress value to Young's modulus value of 15 or more. The glass articles may include Al2O3 mol %+RO mol %?17 mol %, where RO mol %=MgO mol %+CaO mol %, and be substantially free of ZnO, SrO, BaO, B2O3, P2O5, Li2O, and K2O. The glass articles may have a peak compressive stress value in a range of 500 MPa to 1300 MPa. The glass articles are suitable for various high-strength applications, including cover glass applications that experience significant bending stresses during use, for example, cover glasses for flexible displays.
    Type: Application
    Filed: October 10, 2022
    Publication date: April 20, 2023
    Inventor: PETER JOSEPH LEZZI
  • Publication number: 20230107789
    Abstract: A glass composition includes greater than or equal to 60 mol % to less than or equal to 66 mol % SiO2, greater than or equal to 14 mol % to less than or equal to 16 mol % Al2O3, greater than or equal to 7 mol % to less than or equal to 9 mol % Li2O, greater than or equal to 4 mol % to less than or equal to 6 mol % Na2O, greater than or equal to 0.5 mol % to less than or equal to 3 mol % P2O5, greater than or equal to 0.5 mol % to less than or equal to 6 mol % B2O3; and greater than 0 mol % to less than or equal to 1 mol % TiO2. The glass composition may have a fracture toughness of greater than or equal 0.75 MPa?m. A glass composition includes SiO2, Al2O3, Li2O, Na2O, P2O5, and B2O3, wherein a molar ratio of Li2O/Na2O is greater than or equal to 1.2 to less than or equal to 2.0, the glass has a liquidus viscosity in the range from greater than or equal to 50 kP to less than or equal to 75 kP, and the glass has a KIC fracture toughness greater than or equal to 0.75 MPa·m0.5.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 6, 2023
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20230056119
    Abstract: A glass composition includes: 50 mol % to 69 mol % SiO2; 12.5 mol % to 25 mol % Al2O3; 0 mol % to 8 mol % B2O3; greater than 0 mol % to 4 mol % CaO; greater than 0 mol % to 17.5 mol % MgO; 0.5 mol % to 8 mol % Na2O; 0 mol % to 2.5 mol % La2O3; and greater than 8 mol % to 18 mol % Li2O, wherein (Li2O+Na2O+MgO)/Al2O3 is from 0.9 to less than 1.3; and Al2O3+MgO+Li2O+ZrO2+La2O3+Y2O3 is from greater than 23 mol % to less than 50 mol %. The glass composition may be characterized by at least one of the following: a K1C value measured by a chevron short bar method of at least 0.75; and a K1C value measured by a double torsion method of at least 0.8. The glass composition is chemically strengthenable. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Application
    Filed: October 27, 2022
    Publication date: February 23, 2023
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Patent number: 11584681
    Abstract: A glass composition comprises: 50.0 mol % to 70.0 mol % SiO2; 10.0 mol % to 25.0 mol % Al2O3; 0.0 mol % to 5.0 mol % P2O5; 0.0 mol % to 10.0 mol % B2O3; 5.0 mol % to 15.0 mol % Li2O; 1.0 mol % to 15.0 mol % Na2O; and 0.0 mol % to 1.0 mol % K2O. The sum of all alkali oxides, R2O, present in the glass composition may be in the range from greater than or equal to 11.0 mol % to less than or equal to 23.0 mol %. The sum of Al2O3 and R2O present in the glass composition may be in the range from greater than or equal to 26.0 mol % to less than or equal to 40.0 mol %. The glass composition may satisfy the relationship ?0.1?(Al2O3—(R2O+RO))/Li2O?0.3.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: February 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Shuo Cui, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20230051724
    Abstract: Strengthened glass articles formed from a glass composition comprising less than 1.0 mol % R2O, where R is an alkali ion, are disclosed. In various embodiments, the glass articles have a dielectric constant of less than 6.25 and a dielectric loss tangent of less than 0.01 at 30 GHz. Electronic devices, such as consumer electronic products, including the strengthened glass articles, as well as methods of making the strengthened glass articles are also disclosed.
    Type: Application
    Filed: December 30, 2020
    Publication date: February 16, 2023
    Inventors: Timothy Michael Gross, Jeffrey Todd Kohli, Peter Joseph Lezzi, Vitor Marino Schneider, Jingshi Wu, Zheming Zheng
  • Patent number: 11577987
    Abstract: A glass composition includes from 55.0 mol % to 75.0 mol % SiO2; from 8.0 mol % to 20.0 mol % Al2O3; from 3.0 mol % to 15.0 mol % Li2O; from 5.0 mol % to 15.0 mol % Na2O; and less than or equal to 1.5 mol % K2O. The glass composition has the following relationships: Al2O3+Li2O is greater than 22.5 mol %, R2O+RO is greater than or equal to 18.0 mol %, R2O/Al2O3 is greater than or equal to 1.06, SiO2+Al2O3+B2O3+P2O5 is greater than or equal to 78.0 mol %, and (SiO2+Al2O3+B2O3+P2O5)/Li2O is greater than or equal to 8.0. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: February 14, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, Xiaoju Guo, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Rostislav Vatchev Roussev
  • Publication number: 20230041932
    Abstract: The disclosure relates to highly temperable colored glass compositions. The colored glass compositions have high coefficients of thermal expansion and high Young's moduli that advantageously absorb in the ultraviolet and/or blue wavelength ranges. Methods of making such glasses are also provided.
    Type: Application
    Filed: September 29, 2022
    Publication date: February 9, 2023
    Inventors: Timothy James Kiczenski, Peter Joseph Lezzi, Michelle Diane Pierson-Stull, Jingshi Wu
  • Publication number: 20220396519
    Abstract: A glass composition includes: greater than or equal to 55 mol % and less than or equal to 70 mol % SiO2; greater than or equal to 14 mol % and less than or equal to 25 mol % Al2O3; greater than or equal to 0 mol % B203; greater than or equal to 0 mol % P2O5; greater than or equal to 0 mol % and less than or equal to 10 mol % Li2O; greater than or equal to 6.5 mol % and less than or equal to 20 mol % Na2O; greater than or equal to 0 mol % K2O; greater than or equal to 0.1 mol % and less than or equal to 4.5 mol % MgO; greater than or equal to 0 mol % CaO; and greater than or equal to 0 mol % SrO. The sum of Li2O, Na2O, and K2O in the glass composition may be greater than or equal to 6.5 mol % and less than or equal to 22 mol %. The glass composition may satisfy the relationship Al2O3*(2.94)+B2O3*(?0.58)+P2O5*(?3.87)+Li2O*(5.01)+Na2O*(1.89)+K2O*(?2.03) is greater than 100.
    Type: Application
    Filed: June 8, 2022
    Publication date: December 15, 2022
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Patent number: 11492286
    Abstract: The disclosure relates to highly temperable colored glass compositions. The colored glass compositions have high coefficients of thermal expansion and high Young's moduli that advantageously absorb in the ultraviolet and/or blue wavelength ranges. Methods of making such glasses are also provided.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 8, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy James Kiczenski, Peter Joseph Lezzi, Michelle Diane Pierson-Stull, Jingshi Wu
  • Patent number: 11485673
    Abstract: The disclosure relates to glass compositions having improved thermal tempering capabilities. The disclosed glass compositions have high coefficients of thermal expansion and Young's moduli, and are capable of achieving high surface compressions. A method of making such glasses is also provided.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: November 1, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Peter Joseph Lezzi, Jingshi Wu
  • Patent number: 11485674
    Abstract: A glass composition includes: 50 mol % to 69 mol % SiO2; 12.5 mol % to 25 mol % Al2O3; 0 mol % to 8 mol % B2O3; greater than 0 mol % to 4 mol % CaO; greater than 0 mol % to 17.5 mol % MgO; 0.5 mol % to 8 mol % Na2O; 0 mol % to 2.5 mol % La2O3; and greater than 8 mol % to 18 mol % Li2O, wherein (Li2O+Na2O+MgO)/Al2O3 is from 0.9 to less than 1.3; and Al2O3+MgO+Li2O+ZrO2+La2O3+Y2O3 is from greater than 23 mol % to less than 50 mol %. The glass composition may be characterized by at least one of the following: a K1C value measured by a chevron short bar method of at least 0.75; and a K1C value measured by a double torsion method of at least 0.8. The glass composition is chemically strengthenable. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 1, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Patent number: 11460890
    Abstract: Glass-based articles are provided that exhibit improved drop performance. The relationship between properties attributable to the glass composition and stress profile of the glass-based articles are provided that indicate improved drop performance.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: October 4, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo, Rostislav Vatchev Roussev
  • Publication number: 20220274871
    Abstract: A laminated glass article comprises a core layer comprising a core glass composition, and a cladding layer directly adjacent to the core layer and comprising a clad glass composition. A stress of the cladding layer increases with increasing distance from an outer surface of the cladding layer from a compressive stress to a tensile stress, transitions to a compressive stress as a step-change at an interface region between the core layer and the cladding layer, and increases with increasing distance from the interface region to a center of the core layer from the compressive stress to a tensile stress.
    Type: Application
    Filed: July 31, 2020
    Publication date: September 1, 2022
    Inventors: Douglas Clippinger Allan, Vladislav Yuryevich Golyatin, Petr Gorelchenko, Jason Thomas Harris, Jin Su Kim, Peter Joseph Lezzi, Rostislav Vatchev Roussev, Natesan Venkataraman
  • Publication number: 20220267202
    Abstract: Glass-based articles comprise stress profiles providing improved fracture resistance. The glass-based articles herein provide high fracture resistance after multiple drops.
    Type: Application
    Filed: May 12, 2022
    Publication date: August 25, 2022
    Inventors: Timothy Michael Gross, Xiaoju Guo, Jason Thomas Harris, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Ljerka Ukrainczyk
  • Publication number: 20220242774
    Abstract: Glass compositions are provided with low Young's modulus and compatibility with slot drawing techniques, due at least in part to liquidus viscosity and liquidus temperature. When ion-exchanged the resulting glass articles are capable of exhibiting a ratio of a peak compressive stress value in MPa to a Young's modulus value in GPa of 13.0 or more. The glass articles may have a peak compressive stress value in a range of 850 MPa to 1400 MPa. The glass articles are suitable for various high-strength applications, including cover glass applications that experience significant bending stresses during use, for example, cover glasses for flexible displays.
    Type: Application
    Filed: February 2, 2022
    Publication date: August 4, 2022
    Inventors: Binghui Deng, Xiaoju Guo, Peter Joseph Lezzi