Patents by Inventor Peter Joseph Lezzi

Peter Joseph Lezzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220017400
    Abstract: A glass substrate comprises: a first position, wherein a tensile stress of the glass substrate is insufficient to cause fragmentation of the glass substrate into small pieces upon fracture of the glass substrate; and a second position, wherein the glass substrate is bent relative to the first position, and wherein the tensile stress of the glass substrate is sufficient to cause fragmentation of the glass substrate into small pieces upon fracture of the glass substrate. The glass substrate can include a first surface and a second surface. In the first position, the first surface and the second surface of the glass substrate can be planar. In the second position, the first surface and the second surface of the glass substrate can be planar. The small pieces can be generally cubic. In the second position, the glass substrate can be bent uniaxially along a bend axis of the glass substrate.
    Type: Application
    Filed: November 8, 2019
    Publication date: January 20, 2022
    Inventors: Jason Thomas Harris, Peter Joseph Lezzi, Ross Johnson Stewart
  • Publication number: 20220009829
    Abstract: Glass-based articles are provided that exhibit improved fracture resistance. The relationships between properties attributable to the glass composition and stress profile of the glass-based articles are provided that indicate improved fracture resistance.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Inventors: Xiaoju Guo, Jennifer Lynn Hunt, Peter Joseph Lezzi, Rostislav Vatchev Roussev, Charlene Marie Smith, Ross Johnson Stewart
  • Publication number: 20210403368
    Abstract: A glass composition is provided that is capable of being ion exchanged to produce high central tension values. The glass composition includes SiO2, Li2O, and CaO. Glass-based articles formed by ion-exchanging glass-based substrates formed from the glass composition are also provided. The glass-based articles are characterized by a maximum central tension of greater than or equal to 150 MPa, and this maximum central tension value may be achieved by ion exchanging in a sodium containing molten salt bath. The glass-based articles may be utilized in consumer electronic devices.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 30, 2021
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20210347672
    Abstract: A strengthened cover glass or glass-ceramic sheet or article as well as processes and systems for making the strengthened glass or glass-ceramic sheet or article is provided for use in consumer electronic devices. The process comprises cooling the cover glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened cover glass sheets for use in or on consumer electronic products.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Peter Joseph Lezzi, Richard Orr Maschmeyer, John Christopher Thomas, Kevin Lee Wasson
  • Patent number: 11130705
    Abstract: Glass-based articles are provided that exhibit improved fracture resistance. The relationships between properties attributable to the glass composition and stress profile of the glass-based articles are provided that indicate improved fracture resistance.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: September 28, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Xiaoju Guo, Jennifer Lynn Hunt, Peter Joseph Lezzi, Rostislav Vatchev Roussev, Charlene Marie Smith, Ross Johnson Stewart
  • Patent number: 11097974
    Abstract: A strengthened cover glass or glass-ceramic sheet or article as well as processes and systems for making the strengthened glass or glass-ceramic sheet or article is provided for use in consumer electronic devices. The process comprises cooling the cover glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened cover glass sheets for use in or on consumer electronic products.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: August 24, 2021
    Assignee: Corning Incorporated
    Inventors: Peter Joseph Lezzi, Richard Orr Maschmeyer, John Christopher Thomas, Kevin Lee Wasson
  • Publication number: 20210179482
    Abstract: Ion-exchanged alkali aluminosilicate glass articles with a ratio of peak compressive stress value to Young's modulus value of 14 or more. The glass articles may include Al2O3 mol %+RO mol %?18 mol %, where RO mol %=MgO mol %+CaO mol %, and be substantially free of ZnO, SrO, BaO, B2O3, P2O5, Li2O, and K2O. The glass articles may have a peak compressive stress value in a range of 850 MPa to 1400 MPa. The glass articles are suitable for various high-strength applications, including cover glass applications that experience significant bending stresses during use, for example, cover glasses for flexible displays.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 17, 2021
    Inventors: PETER JOSEPH LEZZI, Liying Zhang
  • Publication number: 20210181802
    Abstract: Glass-based articles are provided that exhibit improved drop performance. The relationship between properties attributable to the glass composition and stress profile of the glass-based articles are provided that indicate improved drop performance.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 17, 2021
    Inventors: Emily Marie Aaldenberg, Jared Seaman Aaldenberg, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo, Rostislav Vatchev Roussev
  • Publication number: 20210155532
    Abstract: A glass composition includes from 55.0 mol % to 75.0 mol % SiO2; from 8.0 mol % to 20.0 mol % Al2O3; from 3.0 mol % to 15.0 mol % Li2O; from 5.0 mol % to 15.0 mol % Na2O; and less than or equal to 1.5 mol % K2O. The glass composition has the following relationships: Al2O3+Li2O is greater than 22.5 mol %, R2O+RO is greater than or equal to 18.0 mol %, R2O/Al2O3 is greater than or equal to 1.06, SiO2+Al2O3+B2O3+P2O5 is greater than or equal to 78.0 mol %, and (SiO2+Al2O3+B2O3+P2O5)/Li2O is greater than or equal to 8.0. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Inventors: Timothy Michael Gross, Xiaoju Guo, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Rostislav Vatchev Roussev
  • Publication number: 20210155530
    Abstract: A glass composition comprises: 50.0 mol % to 70.0 mol % SiO2; 10.0 mol % to 25.0 mol % Al2O3; 0.0 mol % to 5.0 mol % P2O3; 0.0 mol % to 10.0 mol % B2O3; 5.0 mol % to 15.0 mol % Li2O; 1.0 mol % to 15.0 mol % Na2O; and 0.0 mol % to 1.0 mol % K2O. The sum of all alkali oxides, R2O, present in the glass composition may be in the range from greater than or equal to 11.0 mol % to less than or equal to 23.0 mol %. The sum of Al2O3 and R2O present in the glass composition may be in the range from greater than or equal to 26.0 mol % to less than or equal to 40.0 mol %. The glass composition may satisfy the relationship ?0.1?(Al2O3—(R2O+RO))/Li2O?0.3.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 27, 2021
    Inventors: Shuo Cui, Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20210155528
    Abstract: A glass composition includes: Si2O, greater than 15 mol % to less than or equal to 32 mol % Al2O3, B2O3, K2O, MgO, Na2O, and Li2O. The glass composition may have a fracture toughness of greater than or equal 0.75 MPa?m and a Young's modulus of greater than or equal to 80 GPa to less than or equal to 120 GPa. The glass composition is chemically strengthenable. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 27, 2021
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20210155527
    Abstract: A glass composition includes: Si2O, greater than 0 mol % to less than or equal to 24 mol % Al2O3, B2O3, K2O, greater than or equal to 10 mol % to less than or equal to 38 mol % MgO, Na2O, and Li2O. The glass composition may have a fracture toughness of greater than or equal 0.80 MPa?m and a Young's modulus of greater than or equal to 80 GPa to less than or equal to 120 GPa. The glass composition is chemically strengthenable. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 27, 2021
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20210147280
    Abstract: Glass compositions including 50 mol % to 65 mol % SiO2, 13 mol % to 20 mol % Al2O3, 6 mol % or more B2O3, 0 mol % to 5 mol % MgO, 0 mol % to 2 mol % CaO, 8 mol % to 14 mol % Li2O, 0 mol % to 4 mol % Na2O, and 0 mol % to 1 mol % K2O, where Al2O3 mol %>R2O+R?O—3 mol %. The glass compositions may have a K1C value of 0.75 MPa*m1/2 or more measured by a chevron short bar method. The glass compositions may be used in a glass article or consumer electronic product.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 20, 2021
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Publication number: 20210122665
    Abstract: The disclosure relates to glass compositions having improved thermal tempering capabilities. The disclosed glass compositions have high coefficients of thermal expansion and Young's moduli, and are capable of achieving high surface compressions. A method of making such glasses is also provided.
    Type: Application
    Filed: August 24, 2018
    Publication date: April 29, 2021
    Inventors: Timothy Michael Gross, Peter Joseph Lezzi, Jingshi Wu
  • Patent number: 10906834
    Abstract: A glass composition includes from 55.0 mol % to 75.0 mol % SiO2; from 8.0 mol % to 20.0 mol % Al2O3; from 3.0 mol % to 15.0 mol % Li2O; from 5.0 mol % to 15.0 mol % Na2O; and less than or equal to 1.5 mol % K2O. The glass composition has the following relationships: Al2O3+Li2O is greater than 22.5 mol %, R2O+RO is greater than or equal to 18.0 mol %, R2O/Al2O3 is greater than or equal to 1.06, SiO2+Al2O3+B2O3+P2O5 is greater than or equal to 78.0 mol %, and (SiO2+Al2O3+B2O3+P2O5)/Li2O is greater than or equal to 8.0. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: February 2, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, Xiaoju Guo, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Rostislav Vatchev Roussev
  • Publication number: 20200399158
    Abstract: A glass ribbon includes a first major surface extending along a first plane. The glass ribbon includes a second major surface extending along a second plane substantially parallel to the first plane. A first thickness is defined between the first major surface and the second major surface along a thickness direction perpendicular to the first major surface. The first thickness is within a range from about 25 ?m to about 125 ?m. An edge surface extends between the first plane and the second plane. The edge surface comprises a height in the thickness direction that is less than the first thickness. Methods of manufacturing a glass ribbon are also provided.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Inventors: Bethany Jon ALDERMAN, Naigeng CHEN, Claire Renata COBLE, Peter Joseph LEZZI, Yousef Kayed QAROUSH, Elizabeth Mary STURDEVANT
  • Publication number: 20200392035
    Abstract: The disclosure relates to glass compositions with high coefficients of thermal expansion and low fracture toughness designed for thermal tempering. These glasses are ideally suited to produce a “dicing” pattern when thermally tempered, even when thin (<3 mm). Disclosed glasses have high thermal expansions at low and high temperatures to produce increased temper stresses once quenched, coupled with low fracture toughness which promotes crack bifurcation and enhanced frangibility. Methods of making such glasses are also provided.
    Type: Application
    Filed: November 30, 2018
    Publication date: December 17, 2020
    Inventors: Timothy Michael Gross, Peter Joseph Lezzi
  • Publication number: 20200385303
    Abstract: The disclosure relates to highly temperable colored glass compositions. The colored glass compositions have high coefficients of thermal expansion and high Young's moduli that advantageously absorb in the ultraviolet and/or blue wavelength ranges. Methods of making such glasses are also provided.
    Type: Application
    Filed: November 30, 2018
    Publication date: December 10, 2020
    Inventors: Timothy James Kiczenski, Peter Joseph Lezzi, Michelle Diane Pierson-Stull, Jingshi Wu
  • Publication number: 20200223742
    Abstract: A glass composition includes: from 55.0 mol % to 70.0 mol % SiO2; from 12.0 mol % to 20.0 mol % Al2O3; from 5.0 mol % to 15.0 mol % Li2O; and from 4.0 mol % to 15.0 mol % Na2O. The glass composition has the following relationships ?8.00 mol %?R2O+RO—Al2O3—B2O3—P2O5??1.75 mol %, 9.00?(SiO2+Al2O3+Li2O)/Na2O, and (Li2O+Al2O3+P2O5)/(Na2O+B2O3)?3.50. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Timothy Michael Gross, Xiaoju Guo, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Rostislav Vatchev Roussev
  • Patent number: 10633279
    Abstract: A glass composition includes: from 55.0 mol % to 70.0 mol % SiO2; from 12.0 mol % to 20.0 mol % Al2O3; from 5.0 mol % to 15.0 mol % Li2O; and from 4.0 mol % to 15.0 mol % Na2O. The glass composition has the following relationships ?8.00 mol %?R2O+RO—Al2O3—B2O3—P2O5??1.75 mol %, 9.00?(SiO2+Al2O3+Li2O)/Na2O, and (Li2O+Al2O3+P2O5)/(Na2O+B2O3)?3.50. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: April 28, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, Xiaoju Guo, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Rostislav Vatchev Roussev