Patents by Inventor Peter Love

Peter Love has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110047201
    Abstract: Systems, methods and apparatus for factoring numbers are provided. The factoring may be accomplished by creating a factor graph, mapping the factor graph onto an analog processor, initializing the analog processor to an initial state, evolving the analog processor to a final state, and receiving an output from the analog processor, the output comprising a set of factors of the number. The factoring may be accomplished by generating a logic circuit representation of the factoring problem, such as a multiplication circuit, encoding the logic circuit representation as a discrete optimization problem, and solving the discrete optimization problem using a quantum processor. Output(s) of the logic circuit representation may be clamped such that the solving involves effectively executing the logic circuit representation in reverse to determine input(s) that corresponds to the clamped output(s).
    Type: Application
    Filed: August 3, 2010
    Publication date: February 24, 2011
    Inventors: William G. Macready, Geordie Rose, Peter Love
  • Publication number: 20090167342
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: March 4, 2009
    Publication date: July 2, 2009
    Inventors: Alec Maassen van den Brink, Peter Love, Mohammad H.S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul Bunyk, Andrew J. Berkley
  • Patent number: 7533068
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 12, 2009
    Assignee: D-Wave Systems, Inc.
    Inventors: Alec Maassen van den Brink, Peter Love, Mohammad H. S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul Bunyk, Andrew J. Berkley
  • Publication number: 20060225165
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: December 22, 2005
    Publication date: October 5, 2006
    Inventors: Alec Maassen van den Brink, Peter Love, Mohammad Amin, Geordie Rose, David Grant, Miles Steininger, Paul Bunyk
  • Patent number: 4170477
    Abstract: Irradiation of collected S.sub.4 N.sub.4 decomposition products with light or radiation in the .gamma. to visible range enhances the initiation of polymerization of the decomposition products to produce polysulfur nitride, which is typically conductive and usually referred to as (SN).sub.x. Irradiation of a masked coating of collected S.sub.4 N.sub.4 decomposition products and completion of polymerization thereof and removal of non-irradiated, non-polymerized portions thereof will result in an electrically conductive coating disposed in a preselected pattern. S.sub.4 N.sub.4 decomposition products may also be dispersed in a matrix, e.g. a photographic emulsion which is transparent or partially transparent to light, or which may be rendered partially or selectively transparent or opaque. This might be useful, for example, for imaging applications, or for producing a selectively transparent pattern for subsequent photoinduced initiation of polymerization of the S.sub.4 N.sub.4 products.
    Type: Grant
    Filed: June 5, 1978
    Date of Patent: October 9, 1979
    Assignee: Temple University
    Inventors: Peter Love, Mortimer M. Labes