Patents by Inventor Peter Patrick

Peter Patrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12212722
    Abstract: A method and apparatus for processing documents is provided. The documents may be conveyed to a feeder for feeding documents to a scanner. The scanner scans each document to obtain image data and then discharges the document to one or more output or sort locations. The system may include a skew reduction assembly for reducing skew in the documents as the documents are fed to the scanner. The system may also include elements for improving image quality and reducing document damage while the document is scanned. The system may further include features for improving the stacking of the discharged documents.
    Type: Grant
    Filed: September 13, 2023
    Date of Patent: January 28, 2025
    Assignee: OPEX Corporation
    Inventors: Michael Sullivan, Kerry O'Mara, John Allen, James Walsh, Dobromir Kamburov, Michael Sparango, David Helmlinger, Peter Patrick
  • Publication number: 20250025919
    Abstract: A method and apparatus for processing documents is provided. The documents may be conveyed to a feeder for feeding documents to a scanner. The scanner scans each document to obtain image data and then discharges the document to one or more output or sort locations. The system may include a skew reduction assembly for reducing skew in the documents as the documents are fed to the scanner. The system may also include elements for improving image quality and reducing document damage while the document is scanned. The system may further include features for improving the stacking of the discharged documents.
    Type: Application
    Filed: October 8, 2024
    Publication date: January 23, 2025
    Inventors: Michael Sullivan, Kerry O'Mara, John Allen, James Walsh, Dobromir Kamburov, Michael Sparango, David Helmlinger, Peter Patrick
  • Patent number: 12138662
    Abstract: A method and apparatus for processing documents is provided. The documents may be conveyed to a feeder for feeding documents to a scanner. The scanner scans each document to obtain image data and then discharges the document to one or more output or sort locations. The system may include a skew reduction assembly for reducing skew in the documents as the documents are fed to the scanner. The system may also include elements for improving image quality and reducing document damage while the document is scanned. The system may further include features for improving the stacking of the discharged documents.
    Type: Grant
    Filed: September 19, 2023
    Date of Patent: November 12, 2024
    Assignee: OPEX Corporation
    Inventors: Michael Sullivan, Kerry O'Mara, John Allen, James Walsh, Dobromir Kamburov, Michael Sparango, David Helmlinger, Peter Patrick
  • Publication number: 20240333851
    Abstract: A method and apparatus for processing documents is provided. The documents may be conveyed to a feeder for feeding documents to a scanner. The scanner scans each document to obtain image data and then discharges the document to one or more output or sort locations. The system may include a skew reduction assembly for reducing skew in the documents as the documents are fed to the scanner. The system may also include elements for improving image quality and reducing document damage while the document is scanned. The system may further include features for improving the stacking of the discharged documents.
    Type: Application
    Filed: September 13, 2023
    Publication date: October 3, 2024
    Inventors: Michael Sullivan, Kerry O'Mara, John Allen, James Walsh, Dobromir Kamburov, Michael Sparango, David Helmlinger, Peter Patrick
  • Patent number: 12023714
    Abstract: A system is provided for processing documents. In particular, the system incorporates a feeder for feeding documents to a device for further processing of the documents. For instance, the system finds particular application in the field of document imaging in which a variety of documents of varying sizes and orientation are to be fed to an imaging system, such as a document scanner. The system may provide a sorting station that receives documents from a workstation and sorts the documents to a plurality of sort locations. The system may export the image data for the documents to a fileserver so that a remote operator can provide instructions for the processing of the documents so that the documents can be subsequently processed according to the instructions provided by the operator.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: July 2, 2024
    Assignee: OPEX Corporation
    Inventors: James Walsh, Peter Patrick
  • Publication number: 20240179255
    Abstract: A method and apparatus for processing documents is provided. The documents may be conveyed to a feeder for feeding documents to a scanner. The scanner scans each document to obtain image data and then discharges the document to one or more output or sort locations. The system may include a skew reduction assembly for reducing skew in the documents as the documents are fed to the scanner. The system may also include elements for improving image quality and reducing document damage while the document is scanned. The system may further include features for improving the stacking of the discharged documents.
    Type: Application
    Filed: March 30, 2023
    Publication date: May 30, 2024
    Inventors: Michael Sullivan, Kerry O'Mara, John Allen, James Walsh, Dobromir Kamburov, Michael Sparango, David Helmlinger, Peter Patrick
  • Patent number: 11985280
    Abstract: A method and apparatus for processing documents is provided. The documents may be conveyed to a feeder for feeding documents to a scanner. The scanner scans each document to obtain image data and then discharges the document to one or more output or sort locations. The system may include a skew reduction assembly for reducing skew in the documents as the documents are fed to the scanner. The system may also include elements for improving image quality and reducing document damage while the document is scanned. The system may further include features for improving the stacking of the discharged documents.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: May 14, 2024
    Assignee: OPEX Corporation
    Inventors: Michael Sullivan, Kerry O'Mara, John Allen, James Walsh, Dobromir Kamburov, Michael Sparango, David Helmlinger, Peter Patrick
  • Publication number: 20240024921
    Abstract: A method and apparatus for processing documents is provided. The documents may be conveyed to a feeder for feeding documents to a scanner. The scanner scans each document to obtain image data and then discharges the document to one or more output or sort locations. The system may include a skew reduction assembly for reducing skew in the documents as the documents are fed to the scanner. The system may also include elements for improving image quality and reducing document damage while the document is scanned. The system may further include features for improving the stacking of the discharged documents.
    Type: Application
    Filed: September 19, 2023
    Publication date: January 25, 2024
    Inventors: Michael Sullivan, Kerry O'Mara, John Allen, James Walsh, Dobromir Kamburov, Michael Sparango, David Helmlinger, Peter Patrick
  • Publication number: 20220219203
    Abstract: A system is provided for processing documents. In particular, the system incorporates a feeder for feeding documents to a device for further processing of the documents. For instance, the system finds particular application in the field of document imaging in which a variety of documents of varying sizes and orientation are to be fed to an imaging system, such as a document scanner. The system may provide a sorting station that receives documents from a workstation and sorts the documents to a plurality of sort locations. The system may export the image data for the documents to a fileserver so that a remote operator can provide instructions for the processing of the documents so that the documents can be subsequently processed according to the instructions provided by the operator.
    Type: Application
    Filed: May 1, 2020
    Publication date: July 14, 2022
    Inventors: James Walsh, Peter Patrick
  • Publication number: 20210346195
    Abstract: A system and method for performing ophthalmic surgery using an ultra-short pulsed laser is provided. The system includes a laser engine configured to provide an ultra-short pulsed laser beam, optics configured to direct the laser beam to an undocked eye of a patient, an eye tracker configured to measure five degrees of freedom of movement of the undocked eye, an optical coherence tomography module configured to measure depth of the undocked eye, and a controller configured to control laser beam position on the undocked eye toward a desired laser pattern based on depth and the five degrees of freedom of movement of the undocked eye. Adaptive optics are also provided. Also disclosed are a scleral ring including fiducial markings and a compliant contact lens and fluid tillable contact lens configured to facilitate ultra-short pulsed laser surgery while reducing or eliminating eye docking requirements.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 11, 2021
    Inventors: Hon M. Lee, Peter-Patrick De Guzman, Victor Kardos, Hong Fu, Robert G. Heitel, John M. Tamkin, Mikhail Levin, Bing Wang
  • Patent number: 11076990
    Abstract: A system and method for performing ophthalmic surgery using an ultra-short pulsed laser is provided. The system includes a laser engine configured to provide an ultra-short pulsed laser beam, optics configured to direct the laser beam to an undocked eye of a patient, an eye tracker configured to measure five degrees of freedom of movement of the undocked eye, an optical coherence tomography module configured to measure depth of the undocked eye, and a controller configured to control laser beam position on the undocked eye toward a desired laser pattern based on depth and the five degrees of freedom of movement of the undocked eye. Adaptive optics are also provided. Also disclosed are a scleral ring including fiducial markings and a compliant contact lens and fluid tillable contact lens configured to facilitate ultra-short pulsed laser surgery while reducing or eliminating eye docking requirements.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 3, 2021
    Assignee: AMO Development, LLC
    Inventors: Hon M. Lee, Peter-Patrick De Guzman, Victor Kardos, Hong Fu, Robert G. Heitel, John M. Tamkin, Mikhail Levin, Bing Wang
  • Patent number: 10863899
    Abstract: Systems and methods for locating the center of a lens in the eye are provided. These systems and methods can be used to improve the effectiveness of a wide variety of different ophthalmic procedures. In one embodiment, a system and method is provided for determining the center of eye lens by illuminating the eye with a set of light sources, and measuring the resulting first image of the light sources reflected from an anterior surface of the lens and the resulting second image of the light sources reflected from a posterior surface of the lens. The location of the center of the lens of the eye is then determined using the measurements. In one embodiment, the center of the lens is determined by interpolating between the measures of the images. Such a determination provides an accurate location of the geometric center of the lens.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: December 15, 2020
    Assignee: AMO Development, LLC
    Inventors: Zsolt Bor, Anthony Dennison, Michael Campos, Peter Patrick De Guzman
  • Publication number: 20200188168
    Abstract: Embodiments of this invention relate to systems and methods for automatic depth (or Z) detection before, during, or after laser-assisted ophthalmic surgery. When performing ophthalmic laser surgery, the operator (or surgeon) needs to make accurate and precise incisions using the laser beam. With the automatic depth detection systems and methods, the same laser used for the surgical procedure may be used for depth measurement of the surgical incisions. The surgical laser system may include a laser delivery system for delivering a pulsed laser beam to photoalter an eye, a mirror to transmit at least a portion of reflected light of the pulsed laser beam, a lens positioned to focus the transmitted reflected lighted on to a detector, (such as a CCD), and a depth encoder configured to automatically detect depth according to one or more of color, intensity, or shape of the focused spot on the CCD.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 18, 2020
    Inventors: Zsolt Bor, Peter-Patrick De Guzman, Anthony Dennison, Michael Campos
  • Patent number: 10568764
    Abstract: Embodiments of this invention relate to systems and methods for automatic depth (or Z) detection before, during, or after laser-assisted ophthalmic surgery. When performing ophthalmic laser surgery, the operator (or surgeon) needs to make accurate and precise incisions using the laser beam. With the automatic depth detection systems and methods, the same laser used for the surgical procedure may be used for depth measurement of the surgical incisions. The surgical laser system may include a laser delivery system for delivering a pulsed laser beam to photoalter an eye, a mirror to transmit at least a portion of reflected light of the pulsed laser beam, a lens positioned to focus the transmitted reflected lighted on to a detector, (such as a CCD), and a depth encoder configured to automatically detect depth according to one or more of color, intensity, or shape of the focused spot on the CCD.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 25, 2020
    Assignee: AMO Development, LLC
    Inventors: Zsolt Bor, Peter-Patrick De Guzman, Anthony Dennison, Michael Campos
  • Publication number: 20180325371
    Abstract: Systems and methods for locating the center of a lens in the eye are provided. These systems and methods can be used to improve the effectiveness of a wide variety of different ophthalmic procedures. In one embodiment, a system and method is provided for determining the center of eye lens by illuminating the eye with a set of light sources, and measuring the resulting first image of the light sources reflected from an anterior surface of the lens and the resulting second image of the light sources reflected from a posterior surface of the lens. The location of the center of the lens of the eye is then determined using the measurements. In one embodiment, the center of the lens is determined by interpolating between the measures of the images. Such a determination provides an accurate location of the geometric center of the lens.
    Type: Application
    Filed: July 23, 2018
    Publication date: November 15, 2018
    Inventors: Zsolt Bor, Anthony Dennison, Michael Campos, Peter Patrick De Guzman
  • Patent number: 10028654
    Abstract: Systems and methods for locating the center of a lens in the eye are provided. These systems and methods can be used to improve the effectiveness of a wide variety of different ophthalmic procedures. In one embodiment, a system and method is provided for determining the center of eye lens by illuminating the eye with a set of light sources, and measuring the resulting first image of the light sources reflected from an anterior surface of the lens and the resulting second image of the light sources reflected from a posterior surface of the lens. The location of the center of the lens of the eye is then determined using the measurements. In one embodiment, the center of the lens is determined by interpolating between the measures of the images. Such a determination provides an accurate location of the geometric center of the lens.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: July 24, 2018
    Assignee: AMO Development, LLC
    Inventors: Zsolt Bor, Anthony Dennison, Michael Campos, Peter Patrick De Guzman
  • Publication number: 20180110647
    Abstract: A system and method for performing ophthalmic surgery using an ultra-short pulsed laser is provided. The system includes a laser engine configured to provide an ultra-short pulsed laser beam, optics configured to direct the laser beam to an undocked eye of a patient, an eye tracker configured to measure five degrees of freedom of movement of the undocked eye, an optical coherence tomography module configured to measure depth of the undocked eye, and a controller configured to control laser beam position on the undocked eye toward a desired laser pattern based on depth and the five degrees of freedom of movement of the undocked eye. Adaptive optics are also provided. Also disclosed are a scleral ring including fiducial markings and a compliant contact lens and fluid tillable contact lens configured to facilitate ultra-short pulsed laser surgery while reducing or eliminating eye docking requirements.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 26, 2018
    Inventors: Hon M. Lee, Peter-Patrick De Guzman, Victor Kardos, Hong Fu, Robert G. Heitel, John M. Tamkin, Mikhail Levin, Bing Wang
  • Patent number: 9877649
    Abstract: Systems and methods are provided for performing a photorefractive assessment. The system comprises a computing device including an image-capturing device, a display device, and a computer application that is executable on the computing device and operable to perform a method including receiving input specifying subject information, capturing an image using the image-capturing device containing eye pupils of a subject, and analyzing the image captured to determine a distance between the subject and the image-capturing device using the subject information and predetermined interpupilary distance information. A remediation action may be performed if the distance determined is not within an appropriate distance range for the photorefractive assessment. An illuminance level of the environment may be analyzed using the image captured to determine whether lighting conditions are appropriate for performing the photorefractive assessment.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 30, 2018
    Assignee: Gobiquity, Inc.
    Inventors: John Michael Tamkin, Peter-Patrick de Guzman
  • Patent number: 9820647
    Abstract: Embodiments of this invention generally relate to systems and methods for eye imaging, and more particularly to measuring the size and position of the lens capsule and of the implanted intraocular lens. In one embodiment, a method for measuring the size and position of the lens capsule and of the implanted intraocular lens comprises generating and emitting one or more light beams at an angle adjacent to the eye, generating one or more eye images, and detecting the position and/or boundary of a lens capsule from its shadow casted by reflected light on the iris.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: November 21, 2017
    Assignee: ABBOTT MEDICAL OPTICS INC.
    Inventors: Zsolt Bor, Anthony W. Dennison, Michael Campos, Peter Patrick De Guzman
  • Publication number: 20170112373
    Abstract: Systems and methods are provided for managing, optimizing subject information, recommending ophthalmologic assessments, and performing diagnostic assessments. The system includes a computing device having an image-capturing device and a display. The system includes a computer application that is executable on the computing device and operable to receive information regarding a subject, recommend ophthalmologic tests based on the information received, and perform ophthalmologic assessments on a subject. Performance of the ophthalmologic assessments causes the application to generate information regarding the ophthalmologic health of the subject, analyze the information generated, and present results of the analysis on the display.
    Type: Application
    Filed: October 24, 2016
    Publication date: April 27, 2017
    Inventors: Andrew A. Burns, Darcy Wendel, Tommy H. Tam, James M. Foley, John Michael Tamkin, Peter-Patrick de Guzman