Patents by Inventor Peter R. Harper

Peter R. Harper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10993317
    Abstract: An optical module may be formed on a wafer. The wafer may include a substrate and one or more optical components encapsulated, at least partially, by the substrate. Each of the optical components are configured to emit or sense light. The wafer may also include one or more printed circuit board (PCB) bars encapsulated, at least partially, by the substrate allowing electrical conductivity from a first side of the substrate to a second side of the substrate. The wafer may also include at least one redistribution layer to electrically couple at least one of the optical components to at least one of the PCB bars.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: April 27, 2021
    Assignee: Apple Inc.
    Inventors: Yinjuan He, Karthik Shanmugam, Peter R. Harper, Tongbi Tom Jiang
  • Patent number: 10811400
    Abstract: A method for manufacturing an optical wafer may include coating multiple optical components with a substrate. The multiple optical components may include a light emitting component and a light detecting component, and each of the optical components may include one or more electrical connections. The method may also include depositing a redistribution layer onto at least one of the electrical connections, wherein the redistribution layer routes the electrical connection within the optical wafer to an external connection. The method may also include depositing a passivation layer over the redistribution layer and depositing a dark photoresist layer on at least the passivation layer. The photoresist layer may operatively reduce optical interference between at least one light emitting component and at least one light detecting component.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: October 20, 2020
    Assignee: Apple Inc.
    Inventors: Yinjuan He, Karthik Shanmugam, Peter R. Harper, Tongbi Tom Jiang
  • Publication number: 20200107436
    Abstract: A method for manufacturing an optical wafer may include coating multiple optical components with a substrate. The multiple optical components may include a light emitting component and a light detecting component, and each of the optical components may include one or more electrical connections. The method may also include depositing a redistribution layer onto at least one of the electrical connections, wherein the redistribution layer routes the electrical connection within the optical wafer to an external connection. The method may also include depositing a passivation layer over the redistribution layer and depositing a dark photoresist layer on at least the passivation layer. The photoresist layer may operatively reduce optical interference between at least one light emitting component and at least one light detecting component.
    Type: Application
    Filed: April 4, 2019
    Publication date: April 2, 2020
    Inventors: Yinjuan He, Karthik Shanmugam, Peter R. Harper, Tongbi Tom Jiang
  • Publication number: 20200107435
    Abstract: An optical module may be formed on a wafer. The wafer may include a substrate and one or more optical components encapsulated, at least partially, by the substrate. Each of the optical components are configured to emit or sense light. The wafer may also include one or more printed circuit board (PCB) bars encapsulated, at least partially, by the substrate allowing electrical conductivity from a first side of the substrate to a second side of the substrate. The wafer may also include at least one redistribution layer to electrically couple at least one of the optical components to at least one of the PCB bars.
    Type: Application
    Filed: April 4, 2019
    Publication date: April 2, 2020
    Inventors: Yinjuan He, Karthik Shanmugam, Peter R. Harper, Tongbi Tom Jiang
  • Patent number: 9837368
    Abstract: A wafer level package device, electronic device, and fabrication methods for fabrication of the wafer level package device are described that include forming an exposed lead tip on the wafer level package for providing a solder buttress structure when coupling the wafer level package device to another electrical component. In implementations, the wafer level package device includes at least one integrated circuit die, a metal pad, a first dielectric layer, a redistribution layer, a second dielectric layer, a pillar structure, a molding layer, a pillar layer, and a plating layer, where the pillar layer is sawn to form pad contacts on at least two sides of the wafer level package device. The exposed pad contact facilitate a solder fillet and buttress structure resulting in improved board level reliability.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: December 5, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Peter R. Harper, Martin Mason, Arkadii V. Samoilov
  • Patent number: 9806047
    Abstract: A wafer level package, electronic device including the wafer level package, and fabrication methods are described that include forming a cantilever pillar design as a portion of the wafer level package and/or a segmented solder connection for preventing and reducing connection stress and increasing board level reliability. In implementations, the wafer level device that employs example techniques in accordance with the present disclosure includes at least a section of a processed semiconductor wafer including at least one integrated circuit die, a first dielectric layer disposed on the processed semiconductor wafer, a first pillar, a second pillar formed on the first pillar, a second dielectric layer formed on the first dielectric layer and surrounding a portion of the first pillar and the second pillar, and at least one solder ball disposed on the second pillar.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: October 31, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Karthik Thambidurai, Peter R. Harper, Sriram Muthukumar, Arkadii V. Samoilov
  • Patent number: 9564415
    Abstract: A semiconductor package device is disclosed that includes a passive energy component integrated therein. In an implementation, the semiconductor package device includes a semiconductor substrate having a first surface and a second surface. The semiconductor substrate includes one or more integrated circuits formed proximal to the first surface. The semiconductor package device also includes a passive energy component positioned over the second surface. The passive energy component is electrically connected to one or more integrated circuits. The semiconductor package device also includes an encapsulation structure disposed over the second surface and at least substantially encapsulates the passive energy component.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 7, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Peter R. Harper
  • Patent number: 9324687
    Abstract: A device and fabrication techniques are described that employ wafer-level packaging techniques to fabricate semiconductor devices that include an embedded integrated circuit chip device and an embedded passive device on a semiconductor wafer device. In implementations, the wafer-level package device includes a semiconductor wafer device, an embedded integrated circuit chip, an embedded passive device, an encapsulation structure covering at least a portion of the semiconductor wafer device, the embedded integrated circuit chip, and the embedded passive device, at least one redistribution layer structure, and at least one solder bump for providing electrical interconnectivity to the devices. Once the wafer is singulated into semiconductor devices, the semiconductor devices may be mounted to a printed circuit board, and the solder bumps may provide electrical interconnectivity through the backside of the device that interface with pads of the printed circuit board.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 26, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Amit S. Kelkar, Karthik Thambidurai, Peter R. Harper, Viren Khandekar
  • Patent number: 9322901
    Abstract: Optical devices are described that integrate multiple heterogeneous components in a single, compact package. In one or more implementations, the optical devices include a carrier substrate having a surface that includes two or more cavities formed therein. One or more optical component devices are disposed within the respective cavities in a predetermined arrangement. A cover is disposed on the surface of the carrier substrate so that the cover at least substantially encloses the optical component devices within their respective cavities. The cover, which may be glass, is configured to transmit light within the predetermined spectrum of wavelengths.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: April 26, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Joy T. Jones, Christopher F. Edwards, Arkadii V. Samoilov, Phillip J. Benzel, Richard I. Olsen, Peter R. Harper
  • Patent number: 9230903
    Abstract: Wafer-level package semiconductor devices for high-current applications are described that have pillars for providing electrical interconnectivity. In an implementation, the wafer-level package devices include an integrated circuit chip having at least one pillar formed over the integrated circuit chip. The pillar is configured to provide electrical interconnectivity with the integrated circuit chip. The wafer-level package device also includes an encapsulation structure configured to support the pillar. The wafer-level package device also includes an integrated circuit chip device (e.g., small die) configured upon the integrated circuit chip (e.g., large die). In the wafer-level package device, the height of the integrated circuit chip device is less than the height of the pillar and/or less than the combined height of the pillar and the one or more solder contacts.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: January 5, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arkadii V. Samoilov, Peter R. Harper, Viren Khandekar, Pirooz Parvarandeh
  • Publication number: 20150325512
    Abstract: Wafer-level package semiconductor devices for high-current applications are described that have pillars for providing electrical interconnectivity. In an implementation, the wafer-level package devices include an integrated circuit chip having at least one pillar formed over the integrated circuit chip. The pillar is configured to provide electrical interconnectivity with the integrated circuit chip. The wafer-level package device also includes an encapsulation structure configured to support the pillar. The wafer-level package device also includes an integrated circuit chip device (e.g., small die) configured upon the integrated circuit chip (e.g., large die). In the wafer-level package device, the height of the integrated circuit chip device is less than the height of the pillar and/or less than the combined height of the pillar and the one or more solder contacts.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Inventors: Arkadii V. Samoilov, Peter R. Harper, Viren Khandekar, Pirooz Parvarandeh
  • Publication number: 20150279799
    Abstract: A wafer level package, electronic device including the wafer level package, and fabrication methods are described that include forming a cantilever pillar design as a portion of the wafer level package and/or a segmented solder connection for preventing and reducing connection stress and increasing board level reliability. In implementations, the wafer level device that employs example techniques in accordance with the present disclosure includes at least a section of a processed semiconductor wafer including at least one integrated circuit die, a first dielectric layer disposed on the processed semiconductor wafer, a first pillar, a second pillar formed on the first pillar, a second dielectric layer formed on the first dielectric layer and surrounding a portion of the first pillar and the second pillar, and at least one solder ball disposed on the second pillar.
    Type: Application
    Filed: September 22, 2014
    Publication date: October 1, 2015
    Inventors: Karthik Thambidurai, Peter R. Harper, Sriram Muthukumar, Arkadii V. Samoilov
  • Publication number: 20150255413
    Abstract: A wafer level package device, electronic device, and fabrication methods for fabrication of the wafer level package device are described that include forming an exposed lead tip on the wafer level package for providing a solder buttress structure when coupling the wafer level package device to another electrical component. In implementations, the wafer level package device includes at least one integrated circuit die, a metal pad, a first dielectric layer, a redistribution layer, a second dielectric layer, a pillar structure, a molding layer, a pillar layer, and a plating layer, where the pillar layer is sawn to form pad contacts on at least two sides of the wafer level package device. The exposed pad contact facilitate a solder fillet and buttress structure resulting in improved board level reliability.
    Type: Application
    Filed: September 25, 2014
    Publication date: September 10, 2015
    Inventors: Peter R. Harper, Martin Mason, Arkadii V. Samoilov
  • Patent number: 9087779
    Abstract: Wafer-level package semiconductor devices for high-current applications are described that have pillars for providing electrical interconnectivity. In an implementation, the wafer-level package devices include an integrated circuit chip having at least one pillar formed over the integrated circuit chip. The pillar is configured to provide electrical interconnectivity with the integrated circuit chip. The wafer-level package device also includes an encapsulation structure configured to support the pillar. The wafer-level package device also includes an integrated circuit chip device (e.g., small die) configured upon the integrated circuit chip (e.g., large die). In the wafer-level package device, the height of the integrated circuit chip device is less than the height of the pillar and/or less than the combined height of the pillar and the one or more solder contacts.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: July 21, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arkadii V. Samoilov, Peter R. Harper, Viren Khandekar, Pirooz Parvarandeh
  • Patent number: 8878350
    Abstract: Semiconductor devices are described that include a semiconductor device having multiple, stacked die on a substrate (e.g., a semiconductor wafer). In one or more implementations, wafer-level package devices that employ example techniques in accordance with the present disclosure include an ultra-thin semiconductor wafer with metallization and vias formed in the wafer and an oxide layer on the surface of the wafer, an integrated circuit chip placed on the semiconductor wafer, an underfill layer between the integrated circuit chip and the semiconductor wafer, a buffer material formed on the semiconductor wafer, the underfill layer, and at least one side of the integrated circuit chip, an adhesive layer placed on the buffer layer and the integrated circuit chip, and a stiffener layer placed on the adhesive layer. The semiconductor device may then be segmented into individual semiconductor chip packages.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: November 4, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Vivek S. Sridharan, Amit S. Kelkar, Peter R. Harper
  • Publication number: 20140306337
    Abstract: Semiconductor devices are described that include a semiconductor device having multiple, stacked die on a substrate (e.g., a semiconductor wafer). In one or more implementations, wafer-level package devices that employ example techniques in accordance with the present disclosure include an ultra-thin semiconductor wafer with metallization and vias formed in the wafer and an oxide layer on the surface of the wafer, an integrated circuit chip placed on the semiconductor wafer, an underfill layer between the integrated circuit chip and the semiconductor wafer, a buffer material formed on the semiconductor wafer, the underfill layer, and at least one side of the integrated circuit chip, an adhesive layer placed on the buffer layer and the integrated circuit chip, and a stiffener layer placed on the adhesive layer. The semiconductor device may then be segmented into individual semiconductor chip packages.
    Type: Application
    Filed: September 13, 2013
    Publication date: October 16, 2014
    Inventors: Vivek S. Sridharan, Amit S. Kelkar, Peter R. Harper
  • Patent number: 8828799
    Abstract: A method for forming an integrated circuit package is disclosed. A flex circuit is form by forming a direct connect pad on a first side of a dielectric layer. After forming the direct connect pad, an opening from a second side of the dielectric layer is formed to expose the direct connect pad. A blind via is formed within the opening in the dielectric layer. A first conductor is formed within the opening. A bond pad of a semiconductor die is electrically coupled with the direct connect pad using a second conductor, wherein the bond pad and the second conductor directly overlie the direct connect pad.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: September 9, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Kenneth Robert Rhyner, Peter R. Harper
  • Publication number: 20140231635
    Abstract: Optical devices are described that integrate multiple heterogeneous components in a single, compact package. In one or more implementations, the optical devices include a carrier substrate having a surface that includes two or more cavities formed therein. One or more optical component devices are disposed within the respective cavities in a predetermined arrangement. A cover is disposed on the surface of the carrier substrate so that the cover at least substantially encloses the optical component devices within their respective cavities. The cover, which may be glass, is configured to transmit light within the predetermined spectrum of wavelengths.
    Type: Application
    Filed: December 27, 2013
    Publication date: August 21, 2014
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Joy T. Jones, Christopher F. Edwards, Arkadii V. Samoilov, Phillip J. Benzel, Richard I. Olsen, Peter R. Harper
  • Publication number: 20140077385
    Abstract: A semiconductor package device is disclosed that includes a passive energy component integrated therein. In an implementation, the semiconductor package device includes a semiconductor substrate having a first surface and a second surface. The semiconductor substrate includes one or more integrated circuits formed proximal to the first surface. The semiconductor package device also includes a passive energy component positioned over the second surface. The passive energy component is electrically connected to one or more integrated circuits. The semiconductor package device also includes an encapsulation structure disposed over the second surface and at least substantially encapsulates the passive energy component.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventor: Peter R. Harper
  • Publication number: 20140077355
    Abstract: A semiconductor package device that includes an integrated circuit device package having a storage circuitry is disclosed. In an implementation, the semiconductor package device includes a semiconductor substrate having a first surface and a second surface. The semiconductor substrate includes one or more integrated circuits formed proximal to (e.g., adjacent to, in, or on) the first surface. The semiconductor package device also includes an integrated circuit device disposed over the second surface, the integrated circuit device including storage circuitry for storing sensitive data. In one or more implementations, the semiconductor package device includes a through-substrate via that furnishes an electrical connection to the integrated circuit package. The semiconductor package device also includes an encapsulation structure disposed over the second surface and at least substantially encapsulates the integrated circuit device package.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Peter R. Harper, Arkadii V. Samoilov, Don Dias