Patents by Inventor Peter R. Kinget

Peter R. Kinget has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200028515
    Abstract: The present disclosure relates to a phase-locked loop (PLL) including a frequency detector, a sub-sampling phase detector (SSPD), and a voltage-controlled oscillator (VCO). The frequency detector is configured to receive a reference signal and an output signal, and to generate a coarse-tuning voltage that indicates a frequency difference between the reference signal and the output signal. The SSPD is configured to sub-sample the output signal using the reference signal, and to generate a fine-tuning voltage that indicates a phase difference between the reference signal and the output signal. The VCO is configured to update the output signal based on the coarse-tuning voltage and the fine-tuning voltage.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 23, 2020
    Inventors: Shravan Siddartha Nagam, Peter R. Kinget
  • Publication number: 20190361088
    Abstract: Mechanisms compressive sampling to detect direction of arrival (DoA) of a signal of interest (SoI), comprising: in each of a plurality of receiver paths, receiving the SoI and producing a received signal using an antenna; and using a modulator to: receive a modulator input signal (MIS) based on the received signal produced by the antenna in the path; modulate the MIS at multiple points in time (MPIT) based on different ones of a plurality of pseudo-random numbers; and produce a plurality of modulated output signals in response to the modulating of the MIS at the MPIT; summing across the receiver paths the one of the modulated output signals produced by each of the receiver paths for each of the MPIT, to produce a plurality of sum signals each corresponding to one of the MPIT; and performing a compressed sensing recovery algorithm to recover the DoA of the SoI.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 28, 2019
    Inventors: Matthew Bajor, John Wright, Tanbir Haque, Peter R. Kinget
  • Publication number: 20190207288
    Abstract: Circuits for wireless communication on multiple frequency bands are provided. In accordance with some embodiments, transceivers are provided, the transceivers comprising: a first quadrature hybrid having a first in port, a first iso port, a first cpl port, and a first thru port; an antenna coupled to the first in port; a first transmitter having an output coupled to the first cpl port; and a first receiver having an input coupled to the first cpl port.
    Type: Application
    Filed: May 22, 2017
    Publication date: July 4, 2019
    Inventors: Jianxun ZHU, Peter R. KINGET
  • Patent number: 10148253
    Abstract: Switched capacitor radio frequency receiver front-ends are provided, comprising: a plurality of banks, each comprising: a first switch connected to a RF input signal; a sampling capacitor connected to the first switch and to ground; a second switch connected in parallel to the sampling capacitor; and a Gm cell coupled to the sampling capacitor and an output; wherein: the output of the Gm cell of each of the plurality on banks are coupled together; and the first switch and the second switch are controlled by a multi-phase signal that causes, for each of the plurality of banks, the first switch to be turned ON at a first point in time and the second switch to be turned ON at a second point in time, wherein the first point in time for a first bank is not the same as the first point in time for a second bank.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: December 4, 2018
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Yang Xu, Peter R. Kinget
  • Patent number: 10122396
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: November 6, 2018
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil
  • Publication number: 20180287559
    Abstract: Circuit for wireless communication are provided, the circuits comprising: a first quadrature hybrid having a first in port, a first iso port, a first cpl port, and a first thru port; a first mixer having a first input coupled to the first cpl port and having an output; a second mixer have a first input coupled to the first cpl port and having an output; a third mixer having a first input coupled to the first thru port and having an output; a fourth mixer having a first input coupled to the first thru port and having an output; and a first complex combiner having inputs coupled to the output of the first mixer, the output of the second mixer, the output of the third mixer, and the output of the fourth mixer that provides first I and Q outputs based the output of the first mixer and the output of the second mixer.
    Type: Application
    Filed: October 4, 2016
    Publication date: October 4, 2018
    Inventors: Jianxun Zhu, Peter R. Kinget
  • Patent number: 10084414
    Abstract: Circuits and methods for switched mode operational amplifiers are provided. In some embodiments, circuits are provided, the circuits comprising: an amplifier having an output; a first pulse width modulator (PWM) having an input coupled to the output of the amplifier and using a first periodic reference signal waveform; and a second PWM having an input coupled to the output of the amplifier and using a second periodic reference signal waveform, wherein the second periodic reference signal waveform is 180 degrees out of phase from the first periodic reference signal waveform. In some embodiments, circuits are provided, the circuits comprising: an amplifier having an output; and a plurality of pulse width modulators (PWMs) each having an input coupled to the output of the amplifier and using a corresponding unique one of a plurality of periodic reference signal waveforms, wherein the plurality of periodic reference signal waveforms are shifted in phase.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: September 25, 2018
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Baradwaj Vigraham, Jayanth Kuppambatti, Peter R. Kinget
  • Publication number: 20180219567
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Application
    Filed: August 14, 2017
    Publication date: August 2, 2018
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil
  • Publication number: 20180138897
    Abstract: Switched capacitor radio frequency receiver front-ends are provided, comprising: a plurality of banks, each comprising: a first switch connected to a RF input signal; a sampling capacitor connected to the first switch and to ground; a second switch connected in parallel to the sampling capacitor; and a Gm cell coupled to the sampling capacitor and an output; wherein: the output of the Gm cell of each of the plurality on banks are coupled together; and the first switch and the second switch are controlled by a multi-phase signal that causes, for each of the plurality of banks, the first switch to be turned ON at a first point in time and the second switch to be turned ON at a second point in time, wherein the first point in time for a first bank is not the same as the first point in time for a second bank.
    Type: Application
    Filed: May 11, 2016
    Publication date: May 17, 2018
    Inventors: Yang Xu, Peter R. Kinget
  • Patent number: 9954497
    Abstract: Circuits for low noise amplifiers with interferer reflecting loops are provided. In some embodiments, circuits for a low noise amplifier with an interferer reflecting loop are provided, the circuits comprising: a low noise amplifier (LNA) having an input and an output; a buffer having an input coupled to the output of the LNA and an output; and notch filter having an input coupled to the output of the buffer and an output coupled to the input of the LNA.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: April 24, 2018
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Jianxun Zhu, Peter R. Kinget, Harish Krishnaswamy
  • Patent number: 9762273
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: September 12, 2017
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Peter R Kinget, John Wright, Rabia Tugce Yazicigil
  • Patent number: 9755590
    Abstract: Low noise amplifiers (LNAs) are provided, the LNAs comprising: a common gate matching network; a capacitord; a resistord; a coild, wherein a side1 of coild is coupled to a side1 of capacitord, a side1 of resistord, and a V+ and a side2 of the coild is coupled to a side2 of capacitord, a side2 of resistord, and a network input; a capacitors; a resistors; a coils, wherein a side1 of coils is coupled to an LNA input, a side1 of capacitors, a side1 of resistors, and a network output and a side2 of coils is coupled to a side2 of the capacitors, a side2 of resistors, and ground; and an output coil that is magnetically coupled to coild and coils and having a side1 coupled to a first terminal of an LNA output and a side2 coupled to a second terminal of the LNA output.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: September 5, 2017
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Baradwaj Vigraham, Peter R. Kinget
  • Patent number: 9755680
    Abstract: Circuits for field-programmable receiver front ends are provided. These front ends can include a field programmable common source low noise transconductance amplifier (LNTA), a field programmable common gate LNTA, first and second four-phase I/Q mixers, first, second, third, and fourth transimpedance amplifiers, an I-path complex combiner, and a Q-path complex combiner. Transconductance cells in each of the field programmable common source LNTA and field programmable common gate LNTA can be programmed to operate in one of a class-AB mode, a class-C mode, and an OFF mode.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: September 5, 2017
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Jianxun Zhu, Peter R. Kinget
  • Publication number: 20170250716
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Application
    Filed: September 14, 2015
    Publication date: August 31, 2017
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil
  • Publication number: 20170093449
    Abstract: Circuits for field-programmable receiver front ends are provided. These front ends can include a field programmable common source low noise transconductance amplifier (LNTA), a field programmable common gate LNTA, first and second four-phase I/Q mixers, first, second, third, and fourth transimpedance amplifiers, an I-path complex combiner, and a Q-path complex combiner. Transconductance cells in each of the field programmable common source LNTA and field programmable common gate LNTA can be programmed to operate in one of a class-AB mode, a class-C mode, and an OFF mode.
    Type: Application
    Filed: September 26, 2016
    Publication date: March 30, 2017
    Inventors: Jianxun Zhu, Peter R. Kinget
  • Publication number: 20170026066
    Abstract: Mechanisms for interferer detection can detect interferers by detecting elevated signal amplitudes in one or more of a plurality of bins (or bands) in a frequency range between a maximum frequency (fMAX) and a minimum frequency (fMIN). To perform rapid interferer detection, the mechanisms downconvert an input signal x(t) with a local oscillator (LO) to a complex baseband signal xI(t)+jxQ(t). xI(t) and xQ(t) are then multiplied by m unique pseudorandom noise (PN) sequences (e.g., Gold sequences) gm(t) to produce m branch signals for I and m branch signals for Q. The branch signals are then low pass filtered, converted from analog to digital form, and pairwise combined by a pairwise complex combiner. Finally, a support recovery function is used to identify interferers.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: Peter R. Kinget, John Wright, Rabia Tugce Yazicigil
  • Publication number: 20160359459
    Abstract: Circuits for low noise amplifiers with interferer reflecting loops are provided. In some embodiments, circuits for a low noise amplifier with an interferer reflecting loop are provided, the circuits comprising: a low noise amplifier (LNA) having an input and an output; a buffer having an input coupled to the output of the LNA and an output; and notch filter having an input coupled to the output of the buffer and an output coupled to the input of the LNA.
    Type: Application
    Filed: February 9, 2015
    Publication date: December 8, 2016
    Inventors: Jianxun Zhu, Peter R. Kinget, Harish Krishnaswamy
  • Publication number: 20160322943
    Abstract: Low noise amplifiers (LNAs) are provided, the LNAs comprising: a common gate matching network; a capacitord; a resistord; a coild, wherein a side1 of coild is coupled to a side1 of capacitord, a side1 of resistord, and a V+ and a side2 of the coild is coupled to a side2 of capacitord, a side2 of resistord, and a network input; a capacitors; a resistors; a coils, wherein a side1 of coils is coupled to an LNA input, a side1 of capacitors, a side1 of resistors, and a network output and a side2 of coils is coupled to a side2 of the capacitors, a side2 of resistors, and ground; and an output coil that is magnetically coupled to coild and coils and having a side1 coupled to a first terminal of an LNA output and a side2 coupled to a second terminal of the LNA output.
    Type: Application
    Filed: December 24, 2014
    Publication date: November 3, 2016
    Inventors: Baradwaj VIGRAHAM, Peter R. KINGET
  • Patent number: 9455757
    Abstract: Circuits and methods for performing harmonic rejection mixing are provided. In some embodiments, the circuit comprises: a first amplifier that amplifies a received signal at a first gain; a second amplifier that amplifies the received signal at a fraction of the first gain; a mixer that receives a local oscillator signal having a first fundamental frequency and the first amplifier output, and outputs a first mixed signal; a second mixer that receives a second local oscillator signal having a fundamental frequency that is a multiple of the first fundamental frequency and the second amplifier output, and outputs a second mixed signal; and an output stage that receives the first and second mixed signals and outputs a sum of the first and second mixed signals.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: September 27, 2016
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Karthik Tripurari, Peter R. Kinget, Harish Krishnaswamy, Teng Yang
  • Publication number: 20160265981
    Abstract: Circuits for temperature monitoring are provided having a first voltage output and a second voltage output comprising: a first transistor having a first transistor input, a first transistor output, and a first transistor control, wherein the first transistor input is connected to a supply voltage; a first diode having a first diode input and a first diode output, wherein the first diode output is connected to ground and the first diode input is connected to the first transistor output, the first transistor control and the first voltage output; a second transistor having a second transistor input, a second transistor output, and a second transistor control, wherein the second transistor input is connected to a supply voltage; a second diode having a second diode input and a second diode output, wherein the second diode input is connected to the second transistor output, the second transistor control, and the second voltage output.
    Type: Application
    Filed: November 3, 2014
    Publication date: September 15, 2016
    Inventors: Mingoo Seok, Peter R. Kinget, Teng Yang, Seongjong Kim