Patents by Inventor Peter Scott

Peter Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210119090
    Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
    Type: Application
    Filed: December 9, 2020
    Publication date: April 22, 2021
    Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
  • Publication number: 20210106818
    Abstract: A lead (1) for an active implantable medical device comprising: an elongated, biocompatible, electrically non-conductive body (3); a plurality of electrically conductive filaments (5) inside the elongated body (3) to electrically connect electrical connectors (6) to corresponding electrodes (8); and at least one elongated decoy conductor (10) inside the elongated body (3) to electromagnetically couple with the plurality of electrically conductive filaments (5), wherein the at least one decoy conductor (10) has a higher electrical resistance than the plurality of electrical conductive filaments (5) to dissipate energy from currents induced by radio frequencies.
    Type: Application
    Filed: October 8, 2020
    Publication date: April 15, 2021
    Inventor: Peter Scott Vallack Single
  • Patent number: 10974184
    Abstract: A filter assembly for an additive manufacturing apparatus has a housing defining a gas inlet and a gas outlet. A filter element is located within the housing between the gas inlet and the gas outlet. The assembly includes valves that can be actuated to seal the gas inlet and the gas outlet. Additionally the assembly has a fluid inlet for allowing ingress of a fluid into the housing. The assembly allows a filter element, which may contain volatile particles, to be changed safely. By sealing the gas inlet and outlet and flooding the housing with a suitable fluid, volatile particles captured by the filter can be neutralised.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: April 13, 2021
    Assignee: RENISHAW PLC
    Inventors: Simon Peter Scott, Christopher Sutcliffe
  • Publication number: 20210101887
    Abstract: The invention relates to processes for preparing isoindolin-1-one derivatives, and in particular processes for preparing (2S,3S)-3-(4-chlorophenyl)-3-[(1R)-1-(4-chlorophenyl)-7-fluoro-5-[(1S)-1-hydroxy-1-(oxan-4-yl)propyl]-1-methoxy-3-oxo-2,3-dihydro-1H-isoindol-2-yl]-2-methylpropanoic acid. The invention also relates to crystalline forms of the compound (2S,3S)-3-(4-chlorophenyl)-3-[(1R)-1-(4-chlorophenyl)-7-fluoro-5-[(1S)-1-hydroxy-1-(oxan-4-yl)propyl]-1-methoxy-3-oxo-2,3-dihydro-1H-isoindol-2-yl]-2-methylpropanoic acid and its salts.
    Type: Application
    Filed: March 28, 2018
    Publication date: April 8, 2021
    Applicants: ASTEX THERAPEUTICS LIMITED, CANCER RESEARCH TECHNOLOGY LIMITED
    Inventors: Steven HOWARD, Benjamin David CONS, Jeffrey David ST. DENIS, Charlotte Mary GRIFFITHS-JONES, Steven Douglas HISCOCK, Rhian Sara HOLVEY, Alan Richard BURNS, David COUSIN, Hannah Louise DEXTER, Guillaume François PARRA, John Paul WATTS, Robert JEWELL, Jennifer Ann STOCKWELL, Kim Louise HIRST, Isabelle Anne LEMASSON, David John NASH, James Daniel OSBORNE, Jonas Calleja PRIEDE, Nicholas Paul RICHARDS, Aaron Michael DUMAS, Brian Christopher BISHOP, David PARRY-JONES, Jeremy Peter SCOTT, Meenakshi Sundaram SHANMUGHAM, Peter Richard MULLENS, David Charles LATHBURY, Darren James DIXON, Matthew James GAUNT
  • Patent number: 10962199
    Abstract: Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: March 30, 2021
    Assignee: Cree, Inc.
    Inventors: Florin A. Tudorica, Christopher P. Hussell, John Wesley Durkee, Peter Scott Andrews, Mark Cash, David Randolph
  • Patent number: 10964858
    Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: March 30, 2021
    Assignee: Cree, Inc.
    Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
  • Patent number: 10953848
    Abstract: Variable behaviour control mechanism with a variety of motion characteristics, the mechanism comprising means to measure a plurality of motion characteristics and to activate systems when a threshold of the motion characteristics is reached. The mechanism described is, for example, a vehicle seat belt and the mechanism minimises or prevents unwanted activation of line extension or retraction of the seat belt. A first mechanism is described where activation occurs between at least one primary system and at least one secondary system when a combination of the sensed motion characteristics achieves a threshold. A second mechanism is described where activation occurs between at least one primary system and at least one secondary system when at least one sensed motion characteristic achieves a threshold, the threshold being modified based on at least one further motion characteristic. A method of use of the above mechanisms is also described.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: March 23, 2021
    Assignee: EDDY CURRENT LIMITED PARTNERSHIP
    Inventors: Andrew Karl Diehl, Peter Scott, Benjamin Woods, Lincoln Frost
  • Publication number: 20210074687
    Abstract: At least one array of LEDs (e.g., in a flip chip configuration) is supported by a substrate having a light extraction surface overlaid with at least one lumiphoric material. Light segregation elements registered with gaps between LEDs are configured to reduce interaction between emissions of different LEDs and/or lumiphoric material regions to reduce scattering and/or optical crosstalk, thereby preserving pixel-like resolution of the resulting emissions. Light segregation elements may be formed by mechanical sawing or etching to define grooves or recesses in a substrate, and filling the grooves or recesses with light-reflective or light-absorptive material. Light segregation elements external to a substrate may be defined by photolithographic patterning and etching of a sacrificial material, and/or by 3D printing.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 11, 2021
    Inventors: John Edmond, Matthew Donofrio, Jesse Reiherzer, Peter Scott Andrews, Joseph G. Clark, Kevin Haberern
  • Patent number: 10933954
    Abstract: An emergency vessel towing system includes a vessel attachment system, a retrieving system, and a towing line. The vessel attachment system is configured to connect to a vessel at sea, and includes a bridle system and a hawser line. The bridle system is operatively connected to the hawser line's proximal end. The bridle system is configured to engage fittings on two sides of a foredeck of the vessel to distribute the load over the foredeck. The retrieving system includes a retrieving line with a proximal end that is detachably connected to the hawser line's distal end in a setup position. The towing line is detachably connected to the hawser line's distal end in a towing position.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 2, 2021
    Assignee: Alaska Maritime Prevention and Response Network
    Inventors: James N. Butler, III, David Scott DeVilbiss, Kenneth Lee FitzGerald, Kristofer Lindberg, John Phillip Reed, Peter Scott Soles
  • Patent number: 10933953
    Abstract: An emergency ship arrest system includes a vessel attachment system, a retrieving system, and an anchor system. The vessel attachment system is configured to connect to a vessel at sea, and includes a bridle system and a hawser line. The bridle system is operatively connected to the hawser line's proximal end. The bridle system is configured to engage fittings on two sides of a foredeck of the vessel to distribute the load over the foredeck. The retrieving system includes a retrieving line with a proximal end that is detachably connected to the hawser line's distal end in a setup position. The anchor system includes a main rode and a para sea anchor. The main rode's proximal end is detachably connected to the hawser line's distal end in an anchor position.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: March 2, 2021
    Assignee: Alaska Maritime Prevention and Response Network
    Inventors: James N. Butler, III, David Scott DeVilbiss, Kenneth Lee FitzGerald, Kristofer Lindberg, John Phillip Reed, Peter Scott Soles
  • Patent number: 10925550
    Abstract: The present disclosure includes a medical monitoring hub as the center of monitoring for a monitored patient. The hub includes configurable medical ports and serial ports for communicating with other medical devices in the patient's proximity. Moreover, the hub communicates with a portable patient monitor. The monitor, when docked with the hub provides display graphics different from when undocked, the display graphics including anatomical information. The hub assembles the often vast amount of electronic medical data, associates it with the monitored patient, and in some embodiments, communicates the data to the patient's medical records.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: February 23, 2021
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Bilal Muhsin, Massi Joe E. Kiani, Anand Sampath, Peter Scott Housel, Eric Karl Kinast
  • Patent number: 10930826
    Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Cree, Inc.
    Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
  • Patent number: 10910352
    Abstract: At least one array of LEDs (e.g., in a flip chip configuration) is supported by a substrate having a light extraction surface overlaid with at least one lumiphoric material. Light segregation elements registered with gaps between LEDs are configured to reduce interaction between emissions of different LEDs and/or lumiphoric material regions to reduce scattering and/or optical crosstalk, thereby preserving pixel-like resolution of the resulting emissions. Light segregation elements may be formed by mechanical sawing or etching to define grooves or recesses in a substrate, and filling the grooves or recesses with light-reflective or light-absorptive material. Light segregation elements external to a substrate may be defined by photolithographic patterning and etching of a sacrificial material, and/or by 3D printing.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: February 2, 2021
    Assignee: Cree, Inc.
    Inventors: John Edmond, Matthew Donofrio, Jesse Reiherzer, Peter Scott Andrews, Joseph G. Clark, Kevin Haberern
  • Patent number: 10903268
    Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, an underfill material with improved surface coverage is provided between adjacent pixels of a pixelated-LED chip. The underfill material may be arranged to cover all lateral surfaces between the adjacent pixels. In some aspects, discontinuous substrate portions are formed before application of underfill materials. In some aspects, a wetting layer is provided to improve wicking or flow of underfill materials during various fabrication steps.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: January 26, 2021
    Assignee: CREE, INC.
    Inventors: Peter Scott Andrews, Steven Wuester
  • Patent number: 10903265
    Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, an underfill material with improved surface coverage is provided between adjacent pixels of a pixelated-LED chip. The underfill material may be arranged to cover all lateral surfaces between the adjacent pixels. In some aspects, discontinuous substrate portions are formed before application of underfill materials. In some aspects, a wetting layer is provided to improve wicking or flow of underfill materials during various fabrication steps.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 26, 2021
    Assignee: CREE, INC.
    Inventors: Peter Scott Andrews, Steven Wuester
  • Patent number: 10897000
    Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: January 19, 2021
    Assignee: Cree, Inc.
    Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
  • Publication number: 20210005793
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs) and more particularly packaged LEDs with light-altering materials are disclosed. A light-altering material is provided in particular configurations within an LED package to redirect light from an LED chip within the LED package and contribute to a desired emission pattern of the LED package. The light-altering material may also block light from the LED chip from escaping in a non-desirable direction, such as large or wide angle emissions. The light-altering material may be arranged on a lumiphoric material adjacent to the LED chip in various configurations. The LED package may include an encapsulant on the light-altering material and the lumiphoric material.
    Type: Application
    Filed: September 10, 2020
    Publication date: January 7, 2021
    Inventors: Kyle Damborsky, Derek Miller, Jack Vu, Peter Scott Andrews, Jasper Cabalu, Colin Blakely, Jesse Reiherzer
  • Publication number: 20200411730
    Abstract: Solid-state light emitting devices including light-emitting diodes (LEDs), and more particularly packaged LEDs are disclosed. LED packages are disclosed that include an LED chip with multiple discrete active layer portions mounted on a submount. The LED packages may further include wavelength conversion elements and light-altering materials. The multiple discrete active layer portions may be electrically connected in series, parallel, or in individually addressable arrangements. The LED chip with the multiple discrete active layer portions may provide the LED package with improved brightness, improved alignment, simplified manufacturing, and reduced costs.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Inventors: Peter Scott Andrews, Colin Blakely, Jesse Reiherzer, Arthur F. Pun
  • Publication number: 20200411487
    Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, a light extraction surface of each substrate portion includes protruding features and light extraction surface recesses. Lateral borders between different pixels are aligned with selected light extraction surface recesses. In some aspects, selected light extraction surface recesses extend through an entire thickness of the substrate. Other technical benefits may additionally or alternatively be achieved.
    Type: Application
    Filed: August 3, 2020
    Publication date: December 31, 2020
    Inventor: Peter Scott Andrews
  • Patent number: 10879435
    Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: December 29, 2020
    Assignee: Cree, Inc.
    Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare