Patents by Inventor Peter Speier

Peter Speier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200042873
    Abstract: For machine training and application of a trained complex-valued machine learning model, an activation function of the machine learning model, such as a neural network, includes a learnable parameter that is complex or defined in a complex domain with two dimensions, such as real and imaginary or magnitude and phase dimensions. The complex learnable parameter is trained for any of various applications, such as MR fingerprinting, other medical imaging, or non-medical uses.
    Type: Application
    Filed: April 25, 2019
    Publication date: February 6, 2020
    Inventors: Guillaume Daval Frerot, Xiao Chen, Simon Arberet, Boris Mailhe, Mariappan S. Nadar, Peter Speier, Mathias Nittka
  • Patent number: 10520574
    Abstract: A magnetic resonance tomography scanner is provided for the determination a diffusion tensor of an examination object, and a method is provided for operating the magnetic resonance tomography scanner. The magnetic resonance tomography scanner acquires a volume image of the examination object by imaging magnetic resonance tomography without diffusion encoding. The control system segments the image according to diffusion-relevant symmetry properties and also determines volume elements of a symmetry group. A first and a second component of a diffusion tensor are acquired by the magnetic resonance tomography scanner at different angles and the control unit uses the symmetry property with the acquired components and the volume image to determine a diffusion tensor for the volume elements.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: December 31, 2019
    Assignee: Siemens Healthcare GmbH
    Inventor: Peter Speier
  • Publication number: 20190391220
    Abstract: In a method and apparatus for determining parameter values in voxels of an examination object using magnetic resonance fingerprinting (MRF), a first signal comparison is made of signal characteristics of established voxel time series with first comparison signal characteristics. Further synthetic comparison signal characteristics are generated from the first comparison signal characteristics and values determined in the first signal comparison. The generated further comparison signal characteristics are used to perform a further signal comparison, with which values of at least a first and a second further parameter are determined. From the further comparison signal characteristics, a value of at least one further parameter is determined that could not necessarily already be determined in the first signal comparison.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 26, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Gregor Koerzdoerfer, Mathias Nittka, Jianing Pang, Peter Speier
  • Publication number: 20190387217
    Abstract: A method for post processing and displaying a three-dimensional angiography image data set of a blood vessel tree of a patient, wherein two-dimensional display images are rendered from the angiography image data set and displayed, wherein two display images are rendered from the angiography image data set using viewing directions forming an angle suited for stereoscopic perception of the display images and both display images are simultaneously displayed on a display screen in a display presentation that causes each display image to be viewed by one eye of a person viewing the display screen.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 19, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Julian Hossbach, Rainer Schneider, Peter Speier
  • Publication number: 20190377051
    Abstract: A method for generating a movement signal of an object such as a body part of a human or animal is provided. The movement signal provides quantitative information on a movement of the object. The method includes acquiring an electromagnetic navigation signal such as a Pilot Tone signal from the object. The electromagnetic navigation signal is modulated by movements of the object. A reference signal is extracted from the navigation signal, and a parameter having a known time-dependency is determined from the reference signal. The navigation signal is corrected based on the parameter or a time-average of the parameter to reduce a signal drift in the navigation signal. The movement signal is extracted from the corrected navigation signal.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 12, 2019
    Inventors: Mario Bacher, Peter Speier
  • Publication number: 20190361080
    Abstract: Techniques are disclosed for providing a first magnetic resonance fingerprinting dictionary using fingerprints having a first length. A transformation matrix is also utilized that is configured to shorten the fingerprints to a second length that is shorter than the first length. A second magnetic resonance fingerprinting dictionary may then be obtained by multiplying the first magnetic resonance fingerprinting dictionary with the transformation matrix, with the fingerprints of the magnetic resonance fingerprinting dictionary having the second length. This facilitates the storage of a MRF dictionary that takes up less storage space and decreases the time taken to perform scanning operations.
    Type: Application
    Filed: May 23, 2019
    Publication date: November 28, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Mathias Nittka, Gregor Koerzdoerfer, Peter Speier, Jianing Pang
  • Publication number: 20190361086
    Abstract: In a magnetic resonance method and apparatus, each repetition of a multi-repetition scan, (a) an RF excitation pulse is applied to the subject under examination, (b) a slice-selection gradient is activated while the RF excitation pulse is being applied, (c) further gradients for spatial encoding are activated, and (d) measurement data are acquired as an echo signal produced after the RF excitation pulse. Steps (a) to (d) are repeated until a desired number of RF excitation pulses have been applied. An additional dedicated dephasing gradient is switched in each case such that a transverse magnetization of the spins to be excited by an RF excitation pulse is sufficiently dephased before each applied RF excitation pulse.
    Type: Application
    Filed: May 23, 2019
    Publication date: November 28, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Mathias Nittka, Gregor Koerzdoerfer, Peter Speier, Thomas Kluge
  • Publication number: 20190340463
    Abstract: A method for performing magnetic resonance fingerprinting includes acquiring a plurality of MR image datasets using at least two pulse sequence types, the plurality of MR image datasets representing signal evolutions for image elements in a region of interest, comparing the plurality of MR image datasets to a dictionary of signal evolutions to identify at least one parameter of the MR image datasets and generating a report indicating the at least one parameter of the MR image datasets.
    Type: Application
    Filed: April 8, 2019
    Publication date: November 7, 2019
    Inventors: Mathias Nittka, Gregor Korzdorfer, Peter Speier, Mark A. Griswold, Yun Liang
  • Publication number: 20190298217
    Abstract: The present invention relates to a method for performing electrical impedance tomography (EIT) by an MR system, wherein during the MR measurement continuous RF signals for an EIT measurement are emitted by at least one RF coil of the MR system, and continuous RF signals modulated by the object undergoing examination are received by the receiving coils of the MR system. An image of the object undergoing examination is determined, based on the modulated continuous RF signals, by an EIT technique.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Applicant: Siemens Healthcare GmbH
    Inventor: Peter Speier
  • Publication number: 20190293739
    Abstract: An apparatus and a method for spatial encoding in magnetic resonance tomography using a radio frequency signal are provided. A first set of parameters from a first frequency and from a first amplitude, and from a second frequency and a second amplitude is determined by the magnetic resonance tomograph, and corresponding signals are generated by a radio frequency device and transmitted by an antenna apparatus. A first gradient above the Larmor frequency of the nuclear spins is generated by the Bloch-Siegert effect. The same thing ensues with a second set of parameters that differs from the first set of parameters at least in one frequency or amplitude and therefore generates a second, different gradient.
    Type: Application
    Filed: March 25, 2019
    Publication date: September 26, 2019
    Inventors: Markus Vester, Ralf Kartäusch, Matthias Gebhardt, Peter Speier
  • Patent number: 10420512
    Abstract: In a method for computing MR images of an examination object that performs a cyclic movement, MR signals are detected over at least two cycles of the cyclic movement. In each of these cycles, data for multiple MR images are recorded. Over these cycles, a magnetization of the examination object that influences the MR images approaches a state of equilibrium in a second of these cycles is closer to the state of equilibrium than in a first of these cycles. Movement information for various movement phases of the cyclic movement of the examination object is determined using the MR images from the second cycle, with movement information of the examination object determined for each of the various movement phases. Movement correction of the examination object is carried out in the MR images of the first cycle using the movement information determined in the second cycle.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: September 24, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Greiser, Michaela Schmidt, Peter Speier, Aurelien Stalder, Michael Zenge
  • Patent number: 10416257
    Abstract: A method for generating at least one acquisition template for an acquisition of magnetic resonance signals, an acquisition template generating unit, a magnetic resonance apparatus and a computer program product. At least one acquisition template is generated with an acquisition template generating unit. The at least one acquisition template has a plurality of spiral-like spokes in a k-space, each spoke having a plurality of spiral points.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: September 17, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Jens Wetzl, Christoph Forman, Peter Speier
  • Patent number: 10393845
    Abstract: A transmitter for pilot tone navigation in a magnetic resonance tomography system includes a power supply and an antenna. The transmitter is configured to transmit a pilot tone signal via the antenna. The transmitter also includes a decoupling element in order to protect a transmitter output from signals that the antenna receives with excitation pulses of the magnetic resonance tomography system during a magnetic resonance tomography. In a method, movement-dependent changes to the pilot tone signal of the transmitter are identified by a controller of the magnetic resonance tomography system.
    Type: Grant
    Filed: December 3, 2016
    Date of Patent: August 27, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Steffen Schröter, Jan Bollenbeck, Matthias Fenchel, Peter Speier, Markus Vester
  • Publication number: 20190167125
    Abstract: In a method and magnetic resonance (MR) apparatus for pulse wave velocity (PWV) measurement along the aorta of a subject using MR imaging, a multislice cardio synchronized segmented ciné MR data acquisition sequence is optimized in order to enhance inflow representation in the slice images, in order to make the multislice MR data acquisition sequence viable for clinical uses, so as to acquire intensity-based MR data from two transverse slices spaced from each other along the descending aorta. The respective intensities of relevant pixels in at least two respective slice images are analyzed in order to identify the arrival of a pulse wave in the respective slices by the onset of flow enhancement in the slices, represented by intensity changes in the pixels. From the onset of flow enhancement in the respective slice images, PWV is calculated. An electronic signal representing the calculated PWV is then provided from a computer.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Peter Speier, Kelvin Chow, Ning Jin
  • Patent number: 10275907
    Abstract: The invention concerns a method for reconstructing medical image data which has access to free capacities of at least two computers and manages the use thereof for the purposes of the reconstruction. The method is a particularly reliable alternative to the reconstruction of medical image data based on algorithms that would require a working memory of above-average size.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: April 30, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Christoph Forman, Rainer Kirsch, Christian Muehlhaeusser, Edgar Mueller, Peter Speier
  • Patent number: 10241175
    Abstract: In a method for operating a medical imaging examination apparatus having multiple subsystems controlled by a control computer in a scan sequence, a control protocol for the scan is provided to the control computer, which determines sequence control data for the control protocol that define different functional subsequences of the scan, with different effective volumes assigned to each functional subsequence. Current ambient conditions of the apparatus are determined that are decisive for the determined relevant sequence control data and associated effective volumes. Control signals for the scan are determined from the sequence control data, the effective volumes and the current ambient conditions determined that optimize the functional subsequences of the scan.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: March 26, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Benner, Swen Campagna, Thorsten Feiweier, Bernd Kuehn, Thomas Loeffler, Thorsten Speckner, Peter Speier, Daniel Nico Splitthoff, Stephan Stoecker, Johann Sukkau, Michael Wullenweber
  • Patent number: 10234525
    Abstract: In a method and apparatus for acquiring magnetic resonance (MR) data from a predetermined volume within an examination object, a control protocol for a gradient echo sequence is selected that specifies that gradient moments produced in said gradient echo sequence be balanced along all three spatial directions. In this gradient echo sequence a slice selection gradient is activated in a slice selection direction that produces a balanced gradient moment, with simultaneous radiation of an RF pulse that simultaneously excites nuclear spins in multiple slices of the examination object, with said excitation being repeated according to a repetition time. A phase of MR signals to be acquired from a same one of said multiple layers is varied from repetition time-to-repetition time.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 19, 2019
    Assignees: Julius-Maximilians-Universitaet-Wuerzburg, Siemens Healthcare GmbH
    Inventors: Peter Speier, Daniel Staeb
  • Patent number: 10222443
    Abstract: A method for generating motion information for an at least partially moving examination region includes outputting at least one first excitation signal with a first frequency band. The first excitation signal is picked up with a receive coil arrangement of a magnetic resonance system. The at least one coil of the receive coil arrangement is configured to pick up a receive frequency band that includes the first frequency band. At least one item of motion information for the examination region is determined from the picked up first excitation signal.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: March 5, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Bollenbeck, Georg Pirkl, Robert Rehner, Peter Speier, Markus Vester
  • Publication number: 20190041480
    Abstract: Systems and methods are provided for iterative reconstruction of a magnetic resonance image using Magnetic Resonance Fingerprinting (MRF). An image series is estimated according to the following three steps: a gradient step to improve data consistency, fingerprint matching, and a spatial regularization. Singular Value Decomposition (SVD) compression may be used along the time dimension to accelerate both the matching and the spatial regularization that operates in the compressed domain as well as to enforce low-rank regularization.
    Type: Application
    Filed: July 25, 2018
    Publication date: February 7, 2019
    Inventors: Simon Arberet, Xiao Chen, Boris Mailhe, Mariappan S. Nadar, Peter Speier
  • Patent number: 10191131
    Abstract: In a method for operating a medical imaging apparatus having subsystems, a control protocol assigned to a scan sequence to be performed is provided to a control computer that determines sequence control data for the control protocol, which define different functional subsequences of the scan sequence. Different effective volumes are assigned to each functional subsequence, and current ambient conditions of the apparatus are determined for the sequence control data and associated effective volumes, for a series of states of physiological processes that occur during the scan sequence. Control signals for the scan sequence are determined from the sequence control data, the effective volumes and the current ambient conditions per observed state, that optimize the functional subsequences of the scan sequence locally.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: January 29, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Thomas Benner, Swen Campagna, Thorsten Feiweier, Bernd Kuehn, Peter Speier