Patents by Inventor Peter Volkmer

Peter Volkmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220033506
    Abstract: Methods are provided for targeting cells for depletion, including without limitation cancer cells, in a regimen comprising contacting the targeted cells with a combination of agents, including (i) an agent that blockades CD47 activity; and (ii) an antibody that specifically binds to EGFR. In some embodiments the cancer cells have a mutated form of one or more of KRAS, NRAS or BRAF. The level of depletion of the targeted cell is enhanced relative to a regimen in which a single agent is used; and the effect may be synergistic relative to a regimen in which a single agent is used.
    Type: Application
    Filed: August 25, 2021
    Publication date: February 3, 2022
    Inventors: Irving L. Weissman, Stephen Willingham, Doris Po Yi Ho, Piero D. Dalerba, Kelly Marie McKenna, Jens-Peter Volkmer
  • Publication number: 20220023348
    Abstract: The invention provides genetically modified hematopoietic stem or progenitor cells (HSPCs) and methods of using the HSPCs in stem cell replacement therapy. The HSPCs are genetically modified to express a receptor conferring a selective advantage on the introduced cells relative to endogenous HSPCs or a control HSPCs without the modification. The presence of such a receptor provides resistance to an immunotherapy regime used for eliminating endogenous HSPCs.
    Type: Application
    Filed: November 26, 2019
    Publication date: January 27, 2022
    Inventors: Craig Gibbs, Jens-Peter Volkmer, Irving L. Weissman
  • Publication number: 20210401979
    Abstract: Methods are provided herein for determining and administering optimized dosing of therapeutic anti-D47 agents, in a schedule that provides safe escalation of dose while achieving a therapeutic level in a clinically effective period of time. The methods can comprise the steps of clearance, escalation, and maintenance. In one embodiment the dosing regimen administers an initial (i) sub-therapeutic dose of an anti-CD47 agent or (ii) a cytoreductive therapy to achieve a safe level of circulating tumor cells for subsequent treatment (clearance); escalating the dose of an anti-CD47 agent until a therapeutic dose is reached (escalation); and maintaining the therapeutic dose for a period of time sufficient to reduce tumor cells in the bone marrow of the patient (maintenance). In an alternative dosing regimen, a patient determined to have a safe level of circulating tumor cells at presentation is treated by the steps of escalation and maintenance without initial clearance.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 30, 2021
    Inventors: Ravindra Majeti, Mark P. Chao, Jie Liu, Jens-Peter Volkmer, Irving L. Weissman
  • Publication number: 20210380689
    Abstract: Methods are provided for treating a subject with a therapeutic dose of anti-CD47 agent by administering a primer agent prior to administering a therapeutically effective dose of an anti-CD47 agent to the subject.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 9, 2021
    Inventors: Stephen Willingham, Maureen Howard, Jie Liu, Ravindra Majeti, Susan Sweeney Prohaska, Anne Kathrin Volkmer, Jens-Peter Volkmer, Irving L. Weissman
  • Patent number: 11154600
    Abstract: Methods are provided for enhancing immunization strategies by manipulation, e.g. in vitro manipulation, of phagocytic antigen presenting cells. In the methods of the invention, phagocytic antigen presenting cells (phAPC) are incubated with a particulate antigen in the presence of an anti-CD47 agent in a dose and for a period of time sufficient to allow the phAPC to phagocytose the particulate antigen, which process generates a “loaded” phAPC. The loaded phAPC is contacted with a population of T cells matched for at least one major histocompatibility locus with the phAPC, where the T cells are stimulated after contacting to generate an effector response against an epitope or epitopes present on the particulate antigen.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 26, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Diane Tseng, Jens-Peter Volkmer, Kipp Andrew Weiskopf, Stephen Willingham, Irving L. Weissman
  • Patent number: 11141480
    Abstract: Methods are provided herein for determining and administering optimized dosing of therapeutic anti-CD47 agents, in a schedule that provides safe escalation of dose while achieving a therapeutic level in a clinically effective period of time. The methods can comprise the steps of clearance, escalation, and maintenance. In one embodiment the dosing regimen administers an initial (i) sub-therapeutic dose of an anti-CD47 agent or (ii) a cytoreductive therapy to achieve a safe level of circulating tumor cells for subsequent treatment (clearance); escalating the dose of an anti-CD47 agent until a therapeutic dose is reached (escalation); and maintaining the therapeutic dose for a period of time sufficient to reduce tumor cells in the bone marrow of the patient (maintenance). In an alternative dosing regimen, a patient determined to have a safe level of circulating tumor cells at presentation is treated by the steps of escalation and maintenance without initial clearance.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: October 12, 2021
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Forty Seven, Inc.
    Inventors: Ravindra Majeti, Mark P. Chao, Jie Liu, Jens-Peter Volkmer, Irving L. Weissman
  • Patent number: 11136391
    Abstract: Methods are provided for treating a subject with a therapeutic dose of anti-CD47 agent by administering a primer agent prior to administering a therapeutically effective dose of an anti-CD47 agent to the subject.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: October 5, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Stephen Willingham, Maureen Howard, Jie Liu, Ravindra Majeti, Susan Sweeney Prohaska, Anne Kathrin Volkmer, Jens-Peter Volkmer, Irving L. Weissman
  • Patent number: 11130813
    Abstract: Methods are provided for targeting cells for depletion, including without limitation cancer cells, in a regimen comprising contacting the targeted cells with a combination of agents, including (i) an agent that blockades CD47 activity; and (ii) an antibody that specifically binds to EGFR. In some embodiments the cancer cells have a mutated form of one or more of KRAS, NRAS or BRAF. The level of depletion of the targeted cell is enhanced relative to a regimen in which a single agent is used; and the effect may be synergistic relative to a regimen in which a single agent is used.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: September 28, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Irving L. Weissman, Stephen Willingham, Doris Po Yi Ho, Piero D. Dalerba, Kelly Marie McKenna, Jens-Peter Volkmer
  • Patent number: 11104731
    Abstract: Methods are provided for treating a subject with a therapeutic dose of anti-CD47 agent by administering a primer agent prior to administering a therapeutically effective dose of an anti-CD47 agent to the subject.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: August 31, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Stephen Willingham, Maureen Howard, Jie Liu, Ravindra Majeti, Susan Sweeney Prohaska, Anne Kathrin Volkmer, Jens-Peter Volkmer, Irving L. Weissman
  • Publication number: 20210230276
    Abstract: Methods are provided for targeting cells for depletion, including without limitation cancer cells, in a regimen comprising contacting the targeted cells with a combination of immunoregulatory agents. The level of depletion of the targeted cell is enhanced relative to a regimen in which a single agent is used; and the effect may be synergistic relative to a regimen in which a single agent is used.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 29, 2021
    Inventors: Stephen Willingham, Doris Po Yi Ho, Kelly Marie McKenna, Irving L. Weissman, Jens-Peter Volkmer, Mark P. Chao, Ravindra Majeti, Melissa N. McCracken
  • Publication number: 20210171654
    Abstract: Anti-SIRP? antibodies, including multi-specific anti-SIRP? antibodies, are provided, as are related compositions and methods. The antibodies of the disclosure bind to SIRP? and can block the interaction of CD47 on one cell with SIRP? on a phagocytic cell.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Inventors: Jie Liu, Jens-Peter Volkmer
  • Patent number: 10961318
    Abstract: Anti-SIRP? antibodies, including multi-specific anti-SIRP? antibodies, are provided, as are related compositions and methods. The antibodies of the disclosure bind to SIRP? and can block the interaction of CD47 on one cell with SIRP? on a phagocytic cell.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: March 30, 2021
    Assignee: Forty Seven, Inc.
    Inventors: Jie Liu, Jens-Peter Volkmer
  • Publication number: 20210079093
    Abstract: Methods are provided for treating a subject with a therapeutic dose of anti-CD47 agent by administering a primer agent prior to administering a therapeutically effective dose of an anti-CD47 agent to the subject.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 18, 2021
    Inventors: Stephen Willingham, Maureen Howard, Jie Liu, Ravindra Majeti, Susan Sweeney Prohaska, Anne Kathrin Volkmer, Jens-Peter Volkmer, Irving L. Weissman
  • Publication number: 20210047416
    Abstract: Methods are provided for treating individuals with ovarian cancers with an anti-CD47 antibody and an anti PD-L1 antibody.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 18, 2021
    Inventors: Chris Hidemi Mizufune Takimoto, Mark Ping Chao, Jens-Peter Volkmer
  • Publication number: 20210038643
    Abstract: Therapeutic and diagnostic methods are provided, which methods relate to the induction of expression of calreticulin on phagocytic cells. Specifically, the methods relate to macrophage-mediated programmed cell removal (PrCR), the methods comprising increasing PrCR by contacting a phagocytic cell with a toll-like receptor (TLR) agonist; or down-regulating PrCR by contacting a phagocytic cell with an inhibitor of Bruton's tyrosine kinase (BTK). In some embodiments, an activator of TLR signaling or a BTK agonist is provided in combination with CD4 7 blockade.
    Type: Application
    Filed: August 19, 2020
    Publication date: February 11, 2021
    Inventors: Irving L. Weissman, Mingye Feng, Jens-Peter Volkmer
  • Publication number: 20200369767
    Abstract: The invention provides co-administration regimes of immunotherapeutic agents specifically binding to c-kit or inhibiting CD47-SIRP? for ablation of endogenous HSPCs. Relatively low levels of anti-c-kit result in saturation of binding to c-kit on HSPCs without significant reduction of the levels HSPCs. Significant reduction of the level of HSPCs can be obtained when the action of anti-c-kit is promoted by an immunotherapeutic agent inhibiting CD47-SIRP?. HSPCs expressing c-kit can thus be reduced to an acceptable level an acceptable level to permit introduction of replacement HSPCs without detrimental delay during which a subject has inadequate HSPCs.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Inventors: Craig Gibbs, Jens-Peter Volkmer, Irving L. Weissman, Kristopher Marjon
  • Patent number: 10780117
    Abstract: Therapeutic and diagnostic methods are provided, which methods relate to the induction of expression of calreticulin on phagocytic cells. Specifically, the methods relate to macrophage-mediated programmed cell removal (PrCR), the methods comprising increasing PrCR by contacting a phagocytic cell with a toll-like receptor (TLR) agonist; or down-regulating PrCR by contacting a phagocytic cell with an inhibitor of Bruton's tyrosine kinase (BTK). In some embodiments, an activator of TLR signaling or a BTK agonist is provided in combination with CD47 blockade.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: September 22, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Irving L. Weissman, Mingye Feng, Jens-Peter Volkmer
  • Patent number: 10781256
    Abstract: Anti-SIRP? antibodies, including multi-specific anti-SIRP? antibodies, are provided, as are related compositions and methods. The antibodies of the disclosure bind to SIRP? and can block the interaction of CD47 on one cell with SIRP? on a phagocytic cell. Antibodies that are bispecific for SIRP? and a second antigen are termed Bi-specific Macrophage Enhancing (BiME) antibodies and have emergent properties. The subject anti-SIRP? antibodies find use in various therapeutic methods. Embodiments of the disclosure include isolated antibodies and derivatives and fragments thereof, pharmaceutical formulations comprising one or more of the anti-SIRP? antibodies; and cell lines that produce the antibodies. Also provided are amino acid sequences of exemplary anti-SIRP? antibodies.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: September 22, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kipp Andrew Weiskopf, Aaron Michael Ring, Jens-Peter Volkmer, Irving L. Weissman, Nan Guo Ring
  • Publication number: 20200283520
    Abstract: Methods, kits, and compositions are provided herein that can be used to treat ovarian cancer using an anti-CD47 antibody. The anti-CD47 antibody can be used alone or in combination with one or more additional agent such as chemotherapy.
    Type: Application
    Filed: October 18, 2018
    Publication date: September 10, 2020
    Inventors: Chris Hidemi Mizufune Takimoto, Mark Ping Chao, Jens-Peter Volkmer
  • Publication number: 20200262918
    Abstract: Anti-SIRP? antibodies, including multi-specific anti-SIRP? antibodies, are provided, as are related compositions and methods. The antibodies of the disclosure bind to SIRP? and can block the interaction of CD47 on one cell with SIRP? on a phagocytic cell. The subject anti-SIRP? antibodies find use in various therapeutic methods. Embodiments of the disclosure include isolated antibodies and derivatives and fragments thereof, pharmaceutical formulations comprising one or more of the anti-SIRP? antibodies; and cell lines that produce the antibodies. Also provided are amino acid sequences of exemplary anti-SIRP? antibodies.
    Type: Application
    Filed: February 27, 2020
    Publication date: August 20, 2020
    Inventors: Jie Liu, Aaron Michael Ring, Jens-Peter Volkmer, Irving L. Weissman