Patents by Inventor Petrus Sundgren

Petrus Sundgren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12294039
    Abstract: A semiconductor structure comprises an n-doped first layer, a p-doped second layer doped with a first dopant, and an active layer disposed between the n-doped first layer and the p-doped second layer and having at least one quantum well. The active layer of the semiconductor structure is divided into a plurality of first optically active regions, at least one second region, and at least one third region. Here, the plurality of first optically active regions are arranged in a hexagonal pattern spaced apart from each other. The at least one quantum well in the active region comprises a larger band gap in the at least one second region than in the plurality of first optically active regions and the at least one third region, the band gap being modified, in particular, by quantum well intermixing. The at least one second region encloses the plurality of first optically active regions.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: May 6, 2025
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Biebersdorf, Stefan Illek, Felix Feix, Christoph Klemp, Ines Pietzonka, Petrus Sundgren, Christian Berger, Ana Kanevce
  • Patent number: 12249672
    Abstract: In an embodiment a method for manufacturing a semiconductor device include providing a growth substrate, depositing an n-doped first layer, depositing an active region on the n-doped first layer, depositing a second layer onto the active region, depositing magnesium (Mg) in the second layer and subsequently to depositing Mg, depositing zinc (Zn) in the second layer such that a concentration of Zn in the second layer decreases from a first value to a second value in a first area of the second layer adjacent to the active region, the first area being in a range of 5 nm to 200 nm.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: March 11, 2025
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Philipp Kreuter, Andreas Biebersdorf, Christoph Klemp, Jens Ebbecke, Ines Pietzonka, Petrus Sundgren
  • Patent number: 12224379
    Abstract: In an embodiment a method for producing optoelectronic semiconductor chips includes A) growing an AlInGaAsP semiconductor layer sequence on a growth substrate along a growth direction, wherein the semiconductor layer sequence includes an active zone for radiation generation, and wherein the active zone is composed of a plurality of alternating quantum well layers and barrier layers, B) generating a structured masking layer, C) regionally intermixing the quantum well layers and the barrier layers by applying an intermixing auxiliary through openings of the masking layer into the active zone in at least one intermixing region and D) singulating the semiconductor layer sequence into sub-regions for the semiconductor chips, wherein the barrier layers in A) are grown from [(AlxGa1-x)yIn1-y]zP1-z with x?0.5, and wherein the quantum well layers are grown in A) from [(AlaGa1-a)bIn1-b]cP1-c with o<a?0.2.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: February 11, 2025
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Felix Feix, Ines Pietzonka, Petrus Sundgren
  • Patent number: 12199134
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: January 14, 2025
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Behringer, Andreas Biebersdorf, Ruth Boss, Erwin Lang, Tobias Meyer, Alexander Pfeuffer, Marc Philippens, Julia Stolz, Tansen Varghese, Sebastian Wittmann, Siegfried Herrmann, Berthold Hahn, Bruno Jentzsch, Korbinian Perzlmaier, Peter Stauss, Petrus Sundgren, Jens Mueller, Kerstin Neveling, Frank Singer, Christian Mueller
  • Patent number: 12199220
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: January 14, 2025
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Biebersdorf, Stefan Illek, Ines Pietzonka, Petrus Sundgren, Christoph Klemp, Felix Feix, Christian Berger, Ana Kanevce
  • Patent number: 12199219
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: January 14, 2025
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Biebersdorf, Stefan Illek, Ines Pietzonka, Petrus Sundgren, Christoph Klemp, Felix Feix, Christian Berger, Ana Kanevce
  • Patent number: 12199222
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: January 14, 2025
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Xue Wang, Petrus Sundgren, Laura Kreiner
  • Patent number: 12176469
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: December 24, 2024
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Biebersdorf, Laura Kreiner, Stefan Illek, Ines Pietzonka, Petrus Sundgren, Christoph Klemp, Felix Feix, Christian Berger, Ana Kanevce
  • Patent number: 12057522
    Abstract: Disclosed is method for making a component and a component comprising a substrate, a semiconductor element arranged on the substrate, an intermediate layer arranged at least in sections between the substrate and the semiconductor element, and a first contact structure, wherein the semiconductor element has a first semiconductor layer, a second semiconductor layer and an active zone, which is arranged in a vertical direction between the semiconductor layers and designed for generating electromagnetic radiation. The active zone has locally deactivated regions along lateral directions, which are not designed for generating electromagnetic radiation. The semiconductor element has an opening which extends through the second semiconductor layer and the active zone to the first semiconductor layer, wherein the opening is different from the deactivated regions of the active zone and is partially filled with a material of the intermediate layer.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: August 6, 2024
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Tansen Varghese, Petrus Sundgren
  • Patent number: 11915935
    Abstract: The invention relates to a method for producing a semiconductor component comprising performing a plasma treatment of an exposed surface of a semiconductor material with halogens, and carrying out a diffusion method with dopants on the exposed surface.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: February 27, 2024
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Andreas Biebersdorf, Stefan Illek, Christoph Klemp, Ines Pietzonka, Petrus Sundgren
  • Publication number: 20230335690
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 19, 2023
    Inventors: Siegfried HERRMANN, Hubert Halbritter, Peter Brick, Thomas Schwarz, Laura Kreiner, Petrus Sundgren, Jean-Jacques Drolet, Michael Brandl, Xue Wang, Andreas Biebersdorf, Christoph Klemp, Ines Pietzonka, Julia Stolz, Simon Schwalenberg, Andreas Leber, Christine Rafael, Eva-Maria Rummel, Nicole Heitzer, Marie Assmann, Erwin Lang, Andreas Rausch, Marc Philippens, Karsten Diekmann, Stefan Illek, Christian Berger, Felix Feix, Ana Kanevce, Georg Bogner, Karl Engl
  • Patent number: 11764339
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: September 19, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Biebersdorf, Laura Kreiner, Stefan Illek, Ines Pietzonka, Petrus Sundgren, Christoph Klemp, Felix Feix, Christian Berger, Ana Kanevce
  • Patent number: 11569635
    Abstract: A radiation-emitting semiconductor component is disclosed. In an embodiment, a component includes a semiconductor layer sequence and a carrier on which the semiconductor layer sequence is arranged, wherein the semiconductor layer sequence comprises an active region configured for generating radiation, an n-conducting mirror region and a p-conducting mirror region, wherein the active region is arranged between the n-conducting mirror region and the p-conducting mirror region, and wherein the p-conducting mirror region is arranged closer to the carrier than the active region.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 31, 2023
    Assignee: OSRAM OLED GMBH
    Inventor: Petrus Sundgren
  • Publication number: 20220384680
    Abstract: In an embodiment a method for producing optoelectronic semiconductor chips includes A) growing an AlInGaAsP semiconductor layer sequence on a growth substrate along a growth direction, wherein the semiconductor layer sequence includes an active zone for radiation generation, and wherein the active zone is composed of a plurality of alternating quantum well layers and barrier layers, B) generating a structured masking layer, C) regionally intermixing the quantum well layers and the barrier layers by applying an intermixing auxiliary through openings of the masking layer into the active zone in at least one intermixing region and D) singulating the semiconductor layer sequence into sub-regions for the semiconductor chips, wherein the barrier layers in A) are grown from [(AlxGa1-x)yIn1-y]zP1-z with x?0.5, and wherein the quantum well layers are grown in A) from [(AlaGa1-a)bIn1-b]cP1-c with o<a?0.2.
    Type: Application
    Filed: September 25, 2020
    Publication date: December 1, 2022
    Inventors: Felix Feix, Ines Pietzonka, Petrus Sundgren
  • Publication number: 20220375991
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 24, 2022
    Inventors: Martin BEHRINGER, Andreas BIEBERSDORF, Ruth BOSS, Erwin LANG, Toblas MEYER, Alexander PFEUFFER, Marc PHILIPPENS, Julia STOLZ, Tansen VARGHESE, Sebastian WITTMANN, Siegfried HERRMANN, Berthold HAHN, Bruno JENTZSCH, Korbinian PERZLMAIER, Peter STAUSS, Petrus SUNDGREN, Jens MUELLER, Kerstin NEVELING, Frank SINGER, Christian MUELLER
  • Publication number: 20220376134
    Abstract: A semiconductor structure comprises an n-doped first layer, a p-doped second layer doped with a first dopant, and an active layer disposed between the n-doped first layer and the p-doped second layer and having at least one quantum well. The active layer of the semiconductor structure is divided into a plurality of first optically active regions, at least one second region, and at least one third region. Here, the plurality of first optically active regions are arranged in a hexagonal pattern spaced apart from each other. The at least one quantum well in the active region comprises a larger band gap in the at least one second region than in the plurality of first optically active regions and the at least one third region, the band gap being modified, in particular, by quantum well intermixing. The at least one second region encloses the plurality of first optically active regions.
    Type: Application
    Filed: March 26, 2020
    Publication date: November 24, 2022
    Inventors: Andreas BIEBERSDORF, Stefan ILLEK, Felix FEIX, Christoph KLEMP, Ines PIETZONKA, Petrus SUNDGREN, Christian BERGER, Ana KANEVCE
  • Publication number: 20220352436
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 3, 2022
    Inventors: Andreas BIEBERSDORF, Michael BRANDL, Peter BRICK, Jean-Jacques DROLET, Hubert HALBRITTER, Laura KREINER, Erwin LANG, Andreas LEBER, Marc PHILIPPENS, Thomas SCHWARZ, Julia STOLZ, Xue WANG, Karsten DIEKMANN, Karl ENGL, Siegfried HERRMANN, Stefan ILLEK, Ines PIETZONKA, Andreas RAUSCH, Simon SCHWALENBERG, Petrus SUNDGREN, Georg BOGNER, Christoph KLEMP, Christine RAFAEL, Felix FEIX, Eva-Maria RUMMEL, Nicole HEITZER, Marie ASSMANN, Christian BERGER, Ana KANEVCE
  • Publication number: 20220320399
    Abstract: The invention relates to a component comprising a substrate, a semiconductor element arranged on the substrate, an intermediate layer arranged at least in sections between the substrate and the semiconductor element, and a first contact structure, wherein the semiconductor element has a first semiconductor layer, a second semiconductor layer and an active zone, which is arranged in a vertical direction between the semiconductor layers and designed for generating electromagnetic radiation. The active zone has locally deactivated regions along lateral directions, which are not designed for generating electromagnetic radiation. The semiconductor element has an opening which extends through the second semiconductor layer and the active zone to the first semiconductor layer, wherein the opening is different from the deactivated regions of the active zone and is partially filled with a material of the intermediate layer.
    Type: Application
    Filed: July 23, 2020
    Publication date: October 6, 2022
    Inventors: Tansen Varghese, Petrus Sundgren
  • Publication number: 20220310888
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Application
    Filed: May 25, 2022
    Publication date: September 29, 2022
    Inventors: Andreas BIEBERSDORF, Michael BRANDL, Peter BRICK, Jean-Jacques DROLET, Hubert HALBRITTER, Laura KREINER, Erwin LANG, Andreas LEBER, Marc PHILIPPENS, Thomas SCHWARZ, Julia STOLZ, Xue WANG, Karsten DIEKMANN, Karl ENGL, Siegfried HERRMANN, Stefan ILLEK, Ines PIETZONKA, Andreas RAUSCH, Simon SCHWALENBERG, Petrus SUNDGREN, Georg BOGNER, Christoph KLEMP, Christine RAFAEL, Felix FEIX, Eva-Maria RUMMEL, Nicole HEITZER, Marie ASSMANN, Christian BERGER, Ana KANEVCE
  • Publication number: 20220293829
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 15, 2022
    Inventors: Andreas BIEBERSDORF, Michael BRANDL, Peter BRICK, Jean-Jacques DROLET, Hubert HALBRITTER, Laura KREINER, Erwin LANG, Andreas LEBER, Marc PHILIPPENS, Thomas SCHWARZ, Julia STOLZ, Xue WANG, Karsten DIEKMANN, Karl ENGL, Siegfried HERRMANN, Stefan ILLEK, Ines PIETZONKA, Andreas RAUSCH, Simon SCHWALENBERG, Petrus SUNDGREN, Georg BOGNER, Christoph KLEMP, Christine RAFAEL, Felix FEIX, Eva-Maria RUMMEL, Nicole HEITZER, Marie ASSMANN, Christian BERGER, Ana KANEVCE