Patents by Inventor Philip A. Kraus

Philip A. Kraus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11315769
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: April 26, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kallol Bera, Anantha K. Subramani, John C. Forster, Philip A. Kraus, Farzad Houshmand, Hanhong Chen
  • Patent number: 11289312
    Abstract: Embodiments of process kit shields and process chambers incorporating same are provided herein. In some embodiments a process kit configured for use in a process chamber for processing a substrate includes a shield having a cylindrical body having an upper portion and a lower portion; an adapter section configured to be supported on walls of the process chamber and having a resting surface to support the shield; and a heater coupled to the adapter section and configured to be electrically coupled to at least one power source of the processes chamber to heat the shield.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: March 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adolph M. Allen, Vanessa Faune, Zhong Qiang Hua, Kirankumar Neelasandra Savandaiah, Anantha K. Subramani, Philip A. Kraus, Tza-Jing Gung, Lei Zhou, Halbert Chong, Vaibhav Soni, Kishor Kalathiparambil
  • Patent number: 11284018
    Abstract: Embodiments disclosed herein include a diagnostic substrate, comprising a baseplate, and a first plurality of image sensors on the baseplate, where the first plurality of image sensors are oriented horizontal to the baseplate. In an embodiment, the diagnostic substrate further comprises a second plurality of image sensors on the baseplate, where the second plurality of image sensors are oriented at a non-orthogonal angle to the baseplate. In an embodiment, the diagnostic substrate further comprises a printed circuit board (PCB) on the baseplate, and a controller on the baseplate, where the controller is communicatively coupled to the first plurality of image sensors and the second plurality of image sensors by the PCB. In an embodiment, the diagnostic substrate further comprises a diffuser lid over the baseplate, the PCB, and the controller.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: March 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Upendra Ummethala, Philip Kraus, Keith Berding, Blake Erickson, Patrick Tae, Devendra Channappa Holeyannavar, Shivaraj Manjunath Nara, Anandakumar Parameshwarappa, Sivasankar Nagarajan, Dhirendra Kumar
  • Publication number: 20220086364
    Abstract: Embodiments disclosed herein include a diagnostic substrate, comprising a baseplate, and a first plurality of image sensors on the baseplate, where the first plurality of image sensors are oriented horizontal to the baseplate. In an embodiment, the diagnostic substrate further comprises a second plurality of image sensors on the baseplate, where the second plurality of image sensors are oriented at a non-orthogonal angle to the baseplate. In an embodiment, the diagnostic substrate further comprises a printed circuit board (PCB) on the baseplate, and a controller on the baseplate, where the controller is communicatively coupled to the first plurality of image sensors and the second plurality of image sensors by the PCB. In an embodiment, the diagnostic substrate further comprises a diffuser lid over the baseplate, the PCB, and the controller.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: Upendra Ummethala, Philip Kraus, Keith Berding, Blake Erickson, Patrick Tae, Devendra Channappa Holeyannavar, Shivaraj Manjunath Nara, Anandakumar Parameshwarappa, Sivasankar Nagarajan, Dhirendra Kumar
  • Patent number: 11244791
    Abstract: Provided herein is a rechargeable power source that can be quickly charged and used for charging mobile and cordless devices. The power source includes an ultracapacitor which comprises a composite structure including, for example open graphene structures or graphene nanoribbons attached to an oxide layer. The oxide layer is on a metal foil surface. The oxide layer includes more than one metal atom.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: February 8, 2022
    Assignee: Oxcion Limited
    Inventors: Cattien V. Nguyen, You Li, Darrell L. Niemann, Hoang Nguyen Ly, Philip A. Kraus
  • Publication number: 20220028710
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body along a first surface of the first lid plate. The first lid plate may define a plurality of apertures through the first lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the plurality of apertures defined through the first lid plate. The systems may include a plurality of isolators. An isolator of the plurality of isolators may be positioned between each lid stack of the plurality of lid stacks and a corresponding aperture of the plurality of apertures defined through the first lid plate. The systems may include a plurality of dielectric plates. A dielectric plate of the plurality of dielectric plates may be seated on each isolator of the plurality of isolators.
    Type: Application
    Filed: July 21, 2020
    Publication date: January 27, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, Yang Guo, Seyyed Abdolreza Fazeli, Nitin Pathak, Badri N. Ramamurthi, Kallol Bera, Xiaopu Li, Philip A. Kraus, Swaminathan T. Srinivasan
  • Publication number: 20210378119
    Abstract: A diagnostic disc includes a disc-shaped body having raised walls that encircle the interior of the disc-shaped body and at least one protrusion extending outwardly from the disc-shaped body. The raised walls of the disc-shaped body define a cavity of the disc-shaped body. A non-contact sensor is attached to each of the at least one protrusion. A a printed circuit board (PCB) is positioned within the cavity formed on the disc-shaped body. A vacuum and high temperature tolerant power source is disposed on the PCB along with a wireless charger and circuitry that is coupled to each non-contact sensor and includes at least a wireless communication circuit and a memory. A cover is positioned over the cavity of the disc-shaped body and shields at least a portion of the PCB, circuitry, power source, and wireless charger within the cavity from an external environment.
    Type: Application
    Filed: June 2, 2020
    Publication date: December 2, 2021
    Inventors: Phillip A. Criminale, Zhiqiang Guo, Philip A. Kraus, Andrew Myles, Martin Perez-Guzman
  • Publication number: 20210366722
    Abstract: Described is a process to clean up junction interfaces for fabricating semiconductor devices involving forming low-resistance electrical connections between vertically separated regions. An etch can be performed to remove silicon oxide on silicon surface at the bottom of a recessed feature. Described are methods and apparatus for etching up the bottom oxide of a hole or trench while minimizing the effects to the underlying epitaxial layer and to the dielectric layers on the field and the corners of metal gate structures. The method for etching features involves a reaction chamber equipped with a combination of capacitively coupled plasma and inductive coupled plasma. CHxFy gases and plasma are used to form protection layer, which enables the selectively etching of bottom silicon dioxide by NH3—NF3 plasma. Ideally, silicon oxide on EPI is removed to ensure low-resistance electric contact while the epitaxial layer and field/corner dielectric layers are—etched only minimally or not at all.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Yu Lei, Xuesong Lu, Tae Hong Ha, Xianmin Tang, Andrew Nguyen, Tza-Jing Gung, Philip A. Kraus, Chung Nang Liu, Hui Sun, Yufei Hu
  • Patent number: 11170982
    Abstract: Methods and apparatus for low angle, selective plasma deposition on a substrate. A plasma chamber uses a process chamber having an inner processing volume, a three dimensional (3D) magnetron with a sputtering target with a hollow inner area that overlaps at least a portion of sides of the sputtering target and moves in a linear motion over a length of the sputtering target, a housing surrounding the 3D magnetron and the sputtering target such that at least one side of the housing exposes the hollow inner area of the sputtering target, and a linear channel interposed between the housing and a wall of the process chamber.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: November 9, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Anantha K. Subramani, Praburam Raja, Steven V. Sansoni, John Forster, Philip Kraus, Yang Guo, Prashanth Kothnur, Farzad Houshmand, Bencherki Mebarki, John Joseph Mazzocco, Thomas Brezoczky
  • Publication number: 20210343496
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: LEONID DORF, TRAVIS KOH, OLIVIER LUERE, OLIVIER JOUBERT, PHILIP A. KRAUS, RAJINDER DHINDSA, JAMES ROGERS
  • Publication number: 20210287898
    Abstract: Method for selectively oxidizing the dielectric surface of a substrate surface comprising a dielectric surface and a metal surface are discussed. Method for cleaning a substrate surface comprising a dielectric surface and a metal surface are also discussed. The disclosed methods oxidize the dielectric surface and/or clean the substrate surface using a plasma generated from hydrogen gas and oxygen gas. The disclosed method may be performed in a single step without the use of separate competing oxidation and reduction reactions. The disclosed methods may be performed at a constant temperature and/or within a single processing chamber.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 16, 2021
    Applicant: Applied Materials, Inc
    Inventors: Bencherki Mebarki, Joung Joo Lee, Yi Xu, Yu Lei, Xianmin Tang, Kelvin Chan, Alexander Jansen, Philip A. Kraus
  • Patent number: 11069504
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse—bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: July 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Travis Koh, Olivier Luere, Olivier Joubert, Philip A. Kraus, Rajinder Dhindsa, James Rogers
  • Publication number: 20210210312
    Abstract: Plasma source assemblies comprising a housing with an RF hot electrode having a body and a plurality of source electrodes extending vertically from the RF hot electrode toward the opening in a front face of the housing are described. Processing chambers incorporating the plasma source assemblies and methods of using the plasma source assemblies are also described.
    Type: Application
    Filed: December 29, 2020
    Publication date: July 8, 2021
    Inventors: Anantha K. Subramani, Farzad Houshmand, Philip A. Kraus, Abhishek Chowdhury, John C. Forster, Kallol Bera
  • Publication number: 20210166923
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode.
    Type: Application
    Filed: January 15, 2021
    Publication date: June 3, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Kallol Bera, Anantha K. Subramani, John C. Forster, Philip A. Kraus, Farzad Houshmand, Hanhong Chen
  • Publication number: 20210090877
    Abstract: A method of depositing nitride films is disclosed. Some embodiments of the disclosure provide a PEALD process for depositing nitride films which utilizes separate reaction and nitridation plasmas. In some embodiments, the nitride films have improved growth per cycle (GPC) relative to films deposited by thermal processes or plasma processes with only a single plasma exposure. In some embodiments, the nitride films have improved film quality relative to films deposited by thermal processes or plasma processes with only a single plasma exposure.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 25, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Hanhong Chen, Philip A. Kraus, Joseph AuBuchon
  • Publication number: 20210050186
    Abstract: A method of depositing titanium nitride is disclosed. Some embodiments of the disclosure provide a PEALD process for depositing titanium nitride which utilizes a direct microwave plasma. In some embodiments, the direct microwave plasma has a high plasma density and low ion energy. In some embodiments, the plasma is generated directly above the substrate surface.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 18, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Hanhong Chen, Arkaprava Dan, Joseph AuBuchon, Kyoung Ha Kim, Philip A. Kraus
  • Patent number: 10903056
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: January 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Kallol Bera, Anantha K. Subramani, John C. Forster, Philip A. Kraus, Farzad Houshmand, Hanhong Chen
  • Patent number: 10879042
    Abstract: Plasma source assemblies comprising a housing with an RF hot electrode having a body and a plurality of source electrodes extending vertically from the RF hot electrode toward the opening in a front face of the housing are described. Processing chambers incorporating the plasma source assemblies and methods of using the plasma source assemblies are also described.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: December 29, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, Farzad Houshmand, Philip A. Kraus, Abhishek Chowdhury, John C. Forster, Kallol Bera
  • Publication number: 20200395198
    Abstract: Embodiments of process kit shields and process chambers incorporating same are provided herein. In some embodiments a process kit configured for use in a process chamber for processing a substrate includes a shield having a cylindrical body having an upper portion and a lower portion; an adapter section configured to be supported on walls of the process chamber and having a resting surface to support the shield; and a heater coupled to the adapter section and configured to be electrically coupled to at least one power source of the processes chamber to heat the shield.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 17, 2020
    Inventors: ADOLPH M. ALLEN, VANESSA FAUNE, ZHONG QIANG HUA, KIRANKUMAR NEELASANDRA SAVANDAIAH, ANANTHA K. SUBRAMANI, PHILIP A. KRAUS, TZA-JING GUNG, LEI ZHOU, HALBERT CHONG, VAIBHAV SONI, KISHOR KALATHIPARAMBIL
  • Publication number: 20200266022
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse—bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Inventors: LEONID DORF, TRAVIS KOH, OLIVIER LUERE, OLIVIER JOUBERT, PHILIP A. KRAUS, RAJINDER DHINDSA, JAMES ROGERS