Patents by Inventor Philip Christoph Brandt

Philip Christoph Brandt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9954068
    Abstract: A method of forming a transistor having a gate electrode includes forming a sacrificial layer over a semiconductor substrate, forming a patterning layer over the sacrificial layer, patterning the patterning layer to form patterned structures, forming spacers adjacent to sidewalls of the patterned structures, removing the patterned structures, etching through the sacrificial layer using the spacers as an etching mask and etching into the semiconductor substrate, thereby forming trenches in the semiconductor substrate, and filling a conductive material in the trenches in the semiconductor substrate to form the gate electrode.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 24, 2018
    Assignee: Infineon Technologies AG
    Inventors: Philip Christoph Brandt, Francisco Javier Santos Rodriguez, Andre Rainer Stegner
  • Publication number: 20180083097
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals. The body includes: at least a diode structure configured to conduct a load current between the terminals and including an anode port electrically connected to the first load terminal and a cathode port electrically connected to the second load terminal; and drift and field stop regions of the same conductivity type. The cathode port includes first port sections and second port sections with dopants of the opposite conductivity type. A transition between each of the second port sections and the field stop region forms a respective pn-junction that extends along a first lateral direction. A diffusion voltage of a respective one of the pn-junctions in an extension direction perpendicular to the first lateral direction is greater than a lateral voltage drop laterally overlapping with the lateral extension of the respective pn-junction.
    Type: Application
    Filed: September 19, 2017
    Publication date: March 22, 2018
    Inventors: Roman Baburske, Johannes Georg Laven, Philip Christoph Brandt
  • Publication number: 20170317165
    Abstract: An edge delimits a semiconductor body in a direction parallel to a first side of the semiconductor body. A peripheral area is arranged between the active area and edge. A first semiconductor region of a first conductivity type extends from the active area into the peripheral area. A second semiconductor region of a second conductivity type forms a pn-junction with the first semiconductor region. A first edge termination region of the second conductivity type arranged at the first side adjoins the first semiconductor region, between the second semiconductor region and edge. A second edge termination region of the first conductivity type arranged at the first side and between the first edge termination region and edge has a varying concentration of dopants of the first conductivity type which increases at least next to the first edge termination region substantially linearly with an increasing distance from the first edge termination region.
    Type: Application
    Filed: April 25, 2017
    Publication date: November 2, 2017
    Inventors: Philip Christoph Brandt, Andre Rainer Stegner, Francisco Javier Santos Rodriguez, Frank Dieter Pfirsch, Hans-Joachim Schulze, Manfred Pfaffenlehner, Thomas Auer
  • Publication number: 20160240642
    Abstract: Some embodiments relate to a method for forming a semiconductor device. The method includes forming a source region of a field effect transistor structure in a semiconductor substrate. The method further includes forming an oxide layer. The method also includes incorporating atoms of at least one atom type of a group of atom types into at least a part of the source region of the field effect transistor structure after forming the oxide layer. The group of atom types includes chalcogen atoms, silicon atoms and argon atoms.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 18, 2016
    Inventors: Hans-Joachim Schulze, Philip Christoph Brandt, Andre Rainer Stegner
  • Publication number: 20160204097
    Abstract: A semiconductor device includes a semiconductor region having charge carriers of a first conductivity type, a transistor cell in the semiconductor region, and a semiconductor channel region in the transistor cell and having a first doping concentration of charge carriers of a second conductivity type. A semiconductor auxiliary region in the semiconductor region has a second doping concentration of charge carriers of the second conductivity type, which is at least 30% higher than the first doping concentration. A pn-junction between the semiconductor auxiliary region and the semiconductor region is positioned as deep or deeper in the semiconductor region as a pn-junction between the semiconductor channel region and the semiconductor region. The semiconductor auxiliary region is positioned closer to the semiconductor channel region than any other semiconductor region having charge carriers of the second conductivity type and that forms a further pn-junction with the semiconductor region.
    Type: Application
    Filed: December 16, 2015
    Publication date: July 14, 2016
    Inventors: Johannes Georg Laven, Roman Baburske, Thomas Basler, Philip Christoph Brandt, Maria Cotorogea
  • Publication number: 20160093706
    Abstract: A method of forming a transistor having a gate electrode includes forming a sacrificial layer over a semiconductor substrate, forming a patterning layer over the sacrificial layer, patterning the patterning layer to form patterned structures, forming spacers adjacent to sidewalls of the patterned structures, removing the patterned structures, etching through the sacrificial layer using the spacers as an etching mask and etching into the semiconductor substrate, thereby forming trenches in the semiconductor substrate, and filling a conductive material in the trenches in the semiconductor substrate to form the gate electrode.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 31, 2016
    Inventors: Philip Christoph Brandt, Francisco Javier Santos Rodriguez, Andre Rainer Stegner