Patents by Inventor Philip H. Campbell
Philip H. Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7468104Abstract: A chemical vapor deposition apparatus includes a deposition chamber defined at least in part by at least one of a chamber sidewall and a chamber base wall. A substrate holder is received within the chamber. At least one process chemical inlet to the deposition chamber is included. At least one of the chamber sidewall and chamber base wall includes a chamber surface having a plurality of purge gas inlets to the chamber therein. The purge gas inlets are separate from the at least one process chemical inlet. A purge gas inlet passageway is provided in fluid communication with the purge gas inlets. Further implementations, including deposition method implementations, are contemplated.Type: GrantFiled: May 17, 2002Date of Patent: December 23, 2008Assignee: Micron Technology, Inc.Inventors: Allen P. Mardian, Philip H. Campbell, Craig M. Carpenter, Randy W. Mercil, Sujit Sharan
-
Patent number: 7422986Abstract: The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.Type: GrantFiled: September 11, 2006Date of Patent: September 9, 2008Assignee: Micron Technology, Inc.Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
-
Patent number: 7396570Abstract: Chemical vapor deposition methods of forming titanium silicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.Type: GrantFiled: March 30, 2006Date of Patent: July 8, 2008Assignee: Micron Technology, Inc.Inventors: Cem Basceri, Irina Vasilyeva, Ammar Derraa, Philip H. Campbell, Gurtej S. Sandhu
-
Patent number: 7393563Abstract: Chemical vapor deposition methods of forming titanium suicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.Type: GrantFiled: March 30, 2006Date of Patent: July 1, 2008Assignee: Micron Technology, Inc.Inventors: Cem Basceri, Irina Vasilyeva, Ammar Derraa, Philip H. Campbell, Gurtej S. Sandhu
-
Patent number: 7329292Abstract: A trap device including at least one substance delivery element for introducing a substance therein is disclosed. The delivered substance may influence the nature of deposits that have formed within the trap device, may influence the formation of deposits within the trap device, or may cause a precipitate to form. Deposit interaction elements may be employed to influence the distribution or redistribution of deposits within the trap device. Deposit interaction elements may effect thermal conditions, introduce substances, or physically interact with deposits within the trap device. Further, a storage region within the trap device may be used to accumulate deposits. In one embodiment, a substantially continuous path through the trap device may be maintained or preserved so that deposits form within the trap device except substantially along the path. The present invention also encompasses a method of operation of a trap device as well as a system incorporating same.Type: GrantFiled: October 25, 2005Date of Patent: February 12, 2008Assignee: Micron Technology, Inc.Inventors: Allen P. Mardian, Philip H. Campbell
-
Patent number: 7311947Abstract: A method of forming a film on a substrate includes activating a gas precursor to form a material on the substrate by irradiating the gas precursor with electromagnetic energy at a frequency tuned to an absorption frequency of the gas precursor.Type: GrantFiled: October 10, 2003Date of Patent: December 25, 2007Assignee: Micron Technology, Inc.Inventors: Ross S. Dando, Dan Gealy, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
-
Patent number: 7270715Abstract: A chemical vapor deposition apparatus includes a subatmospheric substrate transfer chamber. A subatmospheric deposition chamber is defined at least in part by a chamber sidewall. A passageway in the chamber sidewall extends from the transfer chamber to the deposition chamber. Semiconductor substrates pass into and out of the deposition chamber through the passageway for deposition processing. A mechanical gate is included within at least one of the deposition chamber and the sidewall passageway, and is configured to open and close at least a portion of the passageway to the chamber. A chamber liner apparatus of a chemical vapor deposition apparatus forms a deposition subchamber within the chamber. At least a portion of the chamber liner apparatus is selectively movable to fully expose and to fully cover the passageway to the chamber.Type: GrantFiled: October 28, 2003Date of Patent: September 18, 2007Assignee: Micron Technology, Inc.Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
-
Patent number: 7234412Abstract: A method includes removing at least a piece of a deposition chamber liner from a deposition chamber by passing it through a passageway to the deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. A replacement for the removed deposition chamber liner piece is provided into the chamber by passing the replacement through said passageway. A liner apparatus includes a plurality of pieces which when assembled within a selected semiconductor substrate deposition processor chamber are configured to restrict at least a majority portion of all internal wall surfaces which define said semiconductor substrate deposition processor chamber from exposure to deposition material within the chamber. At least some of the pieces are sized for passing completely through a substrate passageway to the chamber through which semiconductor substrates pass into and out of the chamber for deposition processing.Type: GrantFiled: January 23, 2003Date of Patent: June 26, 2007Assignee: Micron Technology, Inc.Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
-
Patent number: 7229666Abstract: Methods of chemical vapor deposition include providing a deposition chamber defined at least in part by at least one of a chamber sidewall and a chamber base wall. At least one process chemical inlet to the deposition chamber is included. A substrate is positioned within the chamber and a process gas is provided over the substrate effective to deposit material onto the substrate. While providing the process gas, a purge gas is emitted into the chamber from a plurality of purge gas inlets comprised by at least one chamber wall surface. The purge gas inlets are separate from the at least one process chemical inlet and the emitting forms an inert gas curtain over the chamber wall surface.Type: GrantFiled: August 6, 2004Date of Patent: June 12, 2007Assignee: Micron Technology, Inc.Inventors: Allen P. Mardian, Philip H. Campbell, Craig M. Carpenter, Randy W. Mercil, Sujit Sharan
-
Patent number: 7192487Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.Type: GrantFiled: October 28, 2003Date of Patent: March 20, 2007Assignee: Micron Technology, Inc.Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
-
Patent number: 7185601Abstract: A chemically sensitive warning apparatus capable of changing colors upon contact with a chemical is disclosed. The apparatus preferably comprises an elongated tape having opposed, first and second major surfaces and warning indicia visible to an individual viewing the first surface to provide visual indication of possible danger or hazardous condition. Mounted to the tape is at least one chemical indicator that is responsive to the presence of at least one chemical by changing colors so as to provide a visual indication of the exposure of the indicator to the chemical. The tape may also include at least one color reference indicia to facilitate interpretation of the color of the chemical indicator when the chemical indicator changes color upon exposure to the chemical.Type: GrantFiled: March 1, 2001Date of Patent: March 6, 2007Assignee: Micron Technology, Inc.Inventors: Craig M. Carpenter, Allen P. Mardian, Philip H. Campbell, Ross S. Dando
-
Patent number: 7105208Abstract: The invention includes methods and processes in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.Type: GrantFiled: October 30, 2003Date of Patent: September 12, 2006Assignee: Micron Technology, Inc.Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
-
Patent number: 7044997Abstract: A trap device including at least one substance delivery element for introducing a substance therein is disclosed. The delivered substance may influence the nature of deposits that have formed within the trap device, may influence the formation of deposits within the trap device, or may cause a precipitate to form. Deposit interaction elements may be employed to influence the distribution or redistribution of deposits within the trap device. Deposit interaction elements may effect thermal conditions, introduce substances, or physically interact with deposits within the trap device. Further, a storage region within the trap device may be used to accumulate deposits. In one embodiment, a substantially continuous path through the trap device may be maintained or preserved so that deposits form within the trap device except substantially along the path. The present invention also encompasses a method of operation of a trap device as well as a system incorporating same.Type: GrantFiled: September 24, 2003Date of Patent: May 16, 2006Assignee: Micron Technology, Inc.Inventors: Allen P. Mardian, Philip H. Campbell
-
Patent number: 7033642Abstract: Chemical vapor deposition methods of forming titanium silicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.Type: GrantFiled: September 17, 2003Date of Patent: April 25, 2006Assignee: Micron Technology, Inc.Inventors: Cem Basceri, Irina Vasilyeva, Ammar Derraa, Philip H. Campbell, Gurtej S. Sandhu
-
Patent number: 6858264Abstract: A chemical vapor deposition chamber has a vacuum exhaust line extending therefrom. Material is deposited over a first plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line. At least a portion of the vacuum exhaust line is isolated from the deposition chamber. While isolating, a cleaning fluid is flowed to the vacuum exhaust line effective to at least reduce thickness of the effluent product over the internal walls within the vacuum exhaust line from what it was prior to initiating said flowing. After said flowing, the portion of the vacuum exhaust line and the deposition chamber are provided in fluid communication with one another and material is deposited over a second plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line.Type: GrantFiled: April 24, 2002Date of Patent: February 22, 2005Assignee: Micron Technology, Inc.Inventors: Ross S. Dando, Philip H. Campbell, Craig M. Carpenter, Allen P. Mardian
-
Patent number: 6849133Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.Type: GrantFiled: November 6, 2003Date of Patent: February 1, 2005Assignee: Micron Technology, Inc.Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
-
Patent number: 6845734Abstract: The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.Type: GrantFiled: April 11, 2002Date of Patent: January 25, 2005Assignee: Micron Technology, Inc.Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
-
Publication number: 20040237895Abstract: A pressure-regulating device for use with a vapor reaction chamber, and methods of its use, are disclosed. In one embodiment according to the invention, the device comprises a magnetically-actuatable valve having an aperture, a plug containing a plug magnet within the valve, a magnet disposed around the valve and magnetically associated with the plug magnet, and an actuator associated with the magnet. The actuator moves the magnet to magnetically bias the plug magnet thereby moving the plug into and out of sealing engagement with the aperture and regulating pressure within the reaction chamber. Plug movement is achieved without interconnecting mechanical parts disposed through the body of the valve that provide surfaces on which adduct, from depositing vaporous by-product material, can accumulate. Since magnetic interaction moves the plug rather than mechanical parts attached to the valve body, build-up of adduct on the internal surfaces of the valve is reduced.Type: ApplicationFiled: July 1, 2004Publication date: December 2, 2004Applicant: Micron Technology, Inc.Inventors: Craig M. Carpenter, Ross S. Dando, Randy W. Mercil, Philip H. Campbell
-
Patent number: 6814813Abstract: A chemical vapor deposition apparatus includes a subatmospheric substrate transfer chamber. A subatmospheric deposition chamber is defined at least in part by a chamber sidewall. A passageway in the chamber sidewall extends from the transfer chamber to the deposition chamber. Semiconductor substrates pass into and out of the deposition chamber through the passageway for deposition processing. A mechanical gate is included within at least one of the deposition chamber and the sidewall passageway, and is configured to open and close at least a portion of the passageway to the chamber. A chamber liner apparatus of a chemical vapor deposition apparatus forms a deposition subchamber within the chamber. At least a portion of the chamber liner apparatus is selectively movable to fully expose and to fully cover the passageway to the chamber.Type: GrantFiled: April 24, 2002Date of Patent: November 9, 2004Assignee: Micron Technology, Inc.Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
-
Patent number: 6800172Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.Type: GrantFiled: February 22, 2002Date of Patent: October 5, 2004Assignee: Micron Technology, Inc.Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil