Patents by Inventor Philip H. Campbell
Philip H. Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6787373Abstract: The invention includes an engagement mechanism for semiconductor substrate deposition process kit hardware, including a body having a distal portion and a proximal portion. The body is sized for movement through a passageway of a semiconductor substrate deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. At least engager is mounted to the distal portion of the body The engager is sized for movement through said passageway with the body. The engager is configured to releasably engage a component of process kit hardware received within said chamber. The invention includes methods of replacing at least a portion of semiconductor substrate deposition process kit hardware. The invention includes methods of depositing materials over a plurality of semiconductor substrates. Other implementations are contemplated.Type: GrantFiled: March 24, 2003Date of Patent: September 7, 2004Assignee: Micron Technology, Inc.Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
-
Publication number: 20040144310Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.Type: ApplicationFiled: November 6, 2003Publication date: July 29, 2004Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
-
Publication number: 20040144315Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.Type: ApplicationFiled: October 28, 2003Publication date: July 29, 2004Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
-
Patent number: 6767823Abstract: Chemical vapor deposition methods of forming titanium silicide comprising layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide comprising layer on the substrate.Type: GrantFiled: March 6, 2002Date of Patent: July 27, 2004Assignee: Micron Technology, Inc.Inventors: Cem Basceri, Irina Vasilyeva, Ammar Derraa, Philip H. Campbell, Gurtej S. Sandhu
-
Publication number: 20040134427Abstract: Methods for passivating exposed surfaces within an apparatus for depositing thin films on a substrate are disclosed. Interior surfaces of a deposition chamber and conduits in communication therewith are passivated to prevent reactants used in a deposition process and reaction products from adsorbing or chemisorbing to the interior surfaces. The surfaces may be passivated for this purpose by surface treatments, lining, temperature regulation, or combinations thereof. A method for determining a temperature or temperature range at which to maintain a surface to minimize accumulation of reactants and reaction products is also disclosed. A deposition apparatus with passivated surfaces within the deposition chamber and gas flow paths is also disclosed.Type: ApplicationFiled: January 9, 2003Publication date: July 15, 2004Inventors: Garo J. Derderian, Gurtej S. Sandhu, Ross S. Dando, Craig M. Carpenter, Philip H. Campbell
-
Patent number: 6758911Abstract: An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.Type: GrantFiled: July 8, 2002Date of Patent: July 6, 2004Assignee: Micron Technology, Inc.Inventors: Philip H. Campbell, David J. Kubista
-
Publication number: 20040089233Abstract: The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.Type: ApplicationFiled: October 30, 2003Publication date: May 13, 2004Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
-
Publication number: 20040089240Abstract: A chemical vapor deposition apparatus includes a subatmospheric substrate transfer chamber. A subatmospheric deposition chamber is defined at least in part by a chamber sidewall. A passageway in the chamber sidewall extends from the transfer chamber to the deposition chamber. Semiconductor substrates pass into and out of the deposition chamber through the passageway for deposition processing. A mechanical gate is included within at least one of the deposition chamber and the sidewall passageway, and is configured to open and close at least a portion of the passageway to the chamber. A chamber liner apparatus of a chemical vapor deposition apparatus forms a deposition subchamber within the chamber. At least a portion of the chamber liner apparatus is selectively movable to fully expose and to fully cover the passageway to the chamber.Type: ApplicationFiled: October 28, 2003Publication date: May 13, 2004Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
-
Patent number: 6734051Abstract: A first cleaning is conducted on a plasma enhanced chemical vapor deposition chamber at room ambient pressure. After the first cleaning, elemental titanium comprising layers are chemical vapor deposited on a first plurality of substrates within the chamber using at least TiCl4. Thereafter, titanium silicide comprising layers are plasma enhanced chemical vapor deposited on a second plurality of substrates within the chamber using at least TiCl4 and a silane. Thereafter, a second cleaning is conducted on the chamber at ambient room pressure. In one implementation after the first cleaning, an elemental titanium comprising layer is chemical vapor deposited over internal surfaces of the chamber while no semiconductor substrate is received within the chamber. In another implementation, a titanium silicide comprising layer is chemical vapor deposited over internal surfaces of the chamber while no semiconductor substrate is received within the chamber.Type: GrantFiled: January 13, 2003Date of Patent: May 11, 2004Assignee: Micron Technology, Inc.Inventors: Cem Basceri, Irina Vasilyeva, Ammar Derraa, Philip H. Campbell, Gurtej S. Sandhu
-
Patent number: 6730355Abstract: A first substrate is provided within a chemical vapor deposition chamber. A reactive gas mixture comprising TiCl4 and a silane is provided within the chamber effective to first chemically vapor deposit a titanium silicide comprising layer on the first substrate. After the first deposit, the first substrate is removed from the chamber. After the first deposit, a first cleaning is conducted within the chamber with a chlorine comprising gas. After the first cleaning, a second cleaning is conducted within the chamber with a hydrogen comprising gas. After the second cleaning and after the removing, a titanium silicide comprising layer is chemically vapor deposited over a second substrate within the chamber using a reactive gas mixture comprising TiCl4 and a silane. Other implementations are disclosed.Type: GrantFiled: March 6, 2002Date of Patent: May 4, 2004Assignee: Micron Technology, Inc.Inventors: Ammar Derraa, Cem Basceri, Irina Vasilyeva, Philip H. Campbell, Gurtej S. Sandhu
-
Patent number: 6716284Abstract: An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.Type: GrantFiled: June 11, 2002Date of Patent: April 6, 2004Assignee: Micron Technology, Inc.Inventors: Philip H. Campbell, David J. Kubista
-
Patent number: 6677250Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.Type: GrantFiled: August 17, 2001Date of Patent: January 13, 2004Assignee: Micron Technology, Inc.Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
-
Publication number: 20030221616Abstract: A pressure-regulating device for use with a vapor reaction chamber, and methods of its use, are disclosed. In one embodiment according to the invention, the device comprises a magnetically-actuatable valve having an aperture, a plug containing a plug magnet within the valve, a magnet disposed around the valve and magnetically associated with the plug magnet, and an actuator associated with the magnet. The actuator moves the magnet to magnetically bias the plug magnet thereby moving the plug into and out of sealing engagement with the aperture and regulating pressure within the reaction chamber. Plug movement is achieved without interconnecting mechanical parts disposed through the body of the valve that provide surfaces on which adduct, from depositing vaporous by-product material, can accumulate. Since magnetic interaction moves the plug rather than mechanical parts attached to the valve body, build-up of adduct on the internal surfaces of the valve is reduced.Type: ApplicationFiled: May 28, 2002Publication date: December 4, 2003Applicant: Micron Technology, Inc.Inventors: Craig M. Carpenter, Ross S. Dando, Randy W. Mercil, Philip H. Campbell
-
Publication number: 20030215569Abstract: A chemical vapor deposition apparatus includes a deposition chamber defined at least in part by at least one of a chamber sidewall and a chamber base wall. A substrate holder is received within the chamber. At least one process chemical inlet to the deposition chamber is included. At least one of the chamber sidewall and chamber base wall includes a chamber surface having a plurality of purge gas inlets to the chamber therein. The purge gas inlets are separate from the at least one process chemical inlet. A purge gas inlet passageway is provided in fluid communication with the purge gas inlets. Further implementations, including deposition method implementations, are contemplated.Type: ApplicationFiled: May 17, 2002Publication date: November 20, 2003Inventors: Allen P. Mardian, Philip H. Campbell, Craig M. Carpenter, Randy W. Mercil, Sujit Sharan
-
Publication number: 20030200926Abstract: A chemical vapor deposition apparatus includes a subatmospheric substrate transfer chamber. A subatmospheric deposition chamber is defined at least in part by a chamber sidewall. A passageway in the chamber sidewall extends from the transfer chamber to the deposition chamber. Semiconductor substrates pass into and out of the deposition chamber through the passageway for deposition processing. A mechanical gate is included within at least one of the deposition chamber and the sidewall passageway, and is configured to open and close at least a portion of the passageway to the chamber. A chamber liner apparatus of a chemical vapor deposition apparatus forms a deposition subchamber within the chamber. At least a portion of the chamber liner apparatus is selectively movable to fully expose and to fully cover the passageway to the chamber.Type: ApplicationFiled: April 24, 2002Publication date: October 30, 2003Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian
-
Publication number: 20030203109Abstract: A chemical vapor deposition chamber has a vacuum exhaust line extending therefrom. Material is deposited over a first plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line. At least a portion of the vacuum exhaust line is isolated from the deposition chamber. While isolating, a cleaning fluid is flowed to the vacuum exhaust line effective to at least reduce thickness of the effluent product over the internal walls within the vacuum exhaust line from what it was prior to initiating said flowing. After said flowing, the portion of the vacuum exhaust line and the deposition chamber are provided in fluid communication with one another and material is deposited over a second plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line.Type: ApplicationFiled: April 24, 2002Publication date: October 30, 2003Inventors: Ross S. Dando, Philip H. Campbell, Craig M. Carpenter, Allen P. Merdian
-
Publication number: 20030194508Abstract: The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.Type: ApplicationFiled: April 11, 2002Publication date: October 16, 2003Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell
-
Publication number: 20030192477Abstract: The invention includes an engagement mechanism for semiconductor substrate deposition process kit hardware, including a body having a distal portion and a proximal portion. The body is sized for movement through a passageway of a semiconductor substrate deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. At least engager is mounted to the distal portion of the body The engager is sized for movement through said passageway with the body. The engager is configured to releasably engage a component of process kit hardware received within said chamber. The invention includes methods of replacing at least a portion of semiconductor substrate deposition process kit hardware. The invention includes methods of depositing materials over a plurality of semiconductor substrates. Other implementations are contemplated.Type: ApplicationFiled: March 24, 2003Publication date: October 16, 2003Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
-
Publication number: 20030194829Abstract: A method includes removing at least a piece of a deposition chamber liner from a deposition chamber by passing it through a passageway to the deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. A replacement for the removed deposition chamber liner piece is provided into the chamber by passing the replacement through said passageway. A liner apparatus includes a plurality of pieces which when assembled within a selected semiconductor substrate deposition processor chamber are configured to restrict at least a majority portion of all internal wall surfaces which define said semiconductor substrate deposition processor chamber from exposure to deposition material within the chamber. At least some of the pieces are sized for passing completely through a substrate passageway to the chamber through which semiconductor substrates pass into and out of the chamber for deposition processing.Type: ApplicationFiled: January 23, 2003Publication date: October 16, 2003Inventors: Craig M. Carpenter, Ross S. Dando, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu
-
Patent number: 6620253Abstract: The invention includes an engagement mechanism for semiconductor substrate deposition process kit hardware, including a body having a distal portion and a proximal portion. The body is sized for movement through a passageway of a semiconductor substrate deposition chamber through which semiconductor substrates pass into and out of the chamber for deposition processing. At least engager is mounted to the distal portion of the body The engager is sized for movement through said passageway with the body. The engager is configured to releasably engage a component of process kit hardware received within said chamber. The invention includes methods of replacing at least a portion of semiconductor substrate deposition process kit hardware. The invention includes methods of depositing materials over a plurality of semiconductor substrates. Other implementations are contemplated.Type: GrantFiled: June 5, 2002Date of Patent: September 16, 2003Assignee: Micron Technology, Inc.Inventors: Ross S. Dando, Craig M. Carpenter, Philip H. Campbell, Allen P. Mardian, Gurtej S. Sandhu