Patents by Inventor Philip J. Kuekes

Philip J. Kuekes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9323217
    Abstract: A negative index material (or metamaterial) crossbar includes a first layer of approximately parallel nanowires and a second layer of approximately parallel nanowires that overlay the nanowires in the first layer. The nanowires in the first layer are approximately perpendicular in orientation to the nanowires in the second layer. Each nanowire of the first layer and each nanowire of the second layer has substantially regularly spaced fingers. The crossbar further includes resonant elements at nanowire intersections between the respective layers. Each resonant element includes two fingers of a nanowire in the first layer and two fingers of a nanowire in the second layer.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: April 26, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shih-Yuan Wang, Alexandre M. Bratkovski, R. Stanley Williams, Jingjing Li, Wei Wu, Philip J. Kuekes
  • Patent number: 9018083
    Abstract: In an example of a method for controlling the formation of dopants in an electrically actuated device, a predetermined concentration of a dopant initiator is selected. The predetermined amount of the dopant is localized, via diffusion, at an interface between an electrode and an active region adjacent to the electrode. The dopant initiator reacts with a portion of the active region to form the dopants.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 28, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Duncan Stewart, Philip J. Kuekes, William Tong
  • Patent number: 9013177
    Abstract: A programmable analog filter includes a crossbar array with a number of junction elements and a filter circuit being implemented within the crossbar array. At least a portion of the junction elements form reprogrammable components within the filter circuit. A method for using a programmable analog filter is also provided.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: April 21, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: John Paul Strachan, Philip J. Kuekes, Gilberto Medeiros Ribeiro
  • Patent number: 8878342
    Abstract: Various embodiments of the present invention are direct to nanoscale, reconfigurable, memristor devices. In one aspect, a memristor device comprises an electrode (301,303) and an alloy electrode (502,602). The device also includes an active region (510,610) sandwiched between the electrode and the alloy electrode. The alloy electrode forms dopants in a sub-region of the active region adjacent to the alloy electrode. The active region can be operated by selectively positioning the dopants within the active region to control the flow of charge carriers between the electrode and the alloy electrode.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: November 4, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nathaniel J. Quitoriano, Douglas Ohlberg, Philip J. Kuekes, Jianhua Yang
  • Publication number: 20140256123
    Abstract: In an example of a method for controlling the formation of dopants in an electrically actuated device, a predetermined concentration of a dopant initiator is selected. The predetermined amount of the dopant is localized, via diffusion, at an interface between an electrode and an active region adjacent to the electrode. The dopant initiator reacts with a portion of the active region to form the dopants.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Duncan Stewart, Philip J. Kuekes, William Tong
  • Patent number: 8797382
    Abstract: Various embodiments of the present invention are directed to negative refractive index-based holograms that can be electronically controlled and dynamically reconfigured to generate one or more color three-dimensional holographic images. In one aspect, a hologram comprises a phase-control layer having a plurality of phase modulation elements. The phase-modulation elements are configured with a negative effective refractive index and selectively transmit wavelengths associated with one of three primary color wavelength. The hologram also includes an intensity-control layer including a plurality of intensity-control elements. One or more color three-dimensional images can be produced by electronically addressing the phase-modulation elements and intensity-control elements in order to phase shift and control the intensity of light transmitted through the hologram. A method for generating a color holographic image using the hologram is also provided, as is a system for generating a color holographic image.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: August 5, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jingjing Li, Philip J. Kuekes
  • Patent number: 8766228
    Abstract: An electrically actuated device includes a first electrode, a second electrode, and an active region disposed between the first and second electrodes. The device further includes at least one of dopant initiators or dopants localized at an interface between i) the first electrode and the active region, or ii) the second electrode and the active region, or iii) the active region and each of the first and second electrodes.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: July 1, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Duncan Stewart, Philip J. Kuekes, William M. Tong
  • Publication number: 20140086806
    Abstract: Systems and methods for synthesizing molecules on a substrate surface are disclosed. In one aspect, a molecule synthesizing system includes a crossbar array with a planar arrangement of crossbar junctions. Each crossbar junction is independently switchable between a high-resistance state and a low-resistance state. The system also includes a slab with a first surface and a second surface parallel to the first surface. The second surface is disposed on the crossbar array. A current applied to a crossbar junction in a high-resistance state creates an adjacent heated site on the first surface for attaching thermally reactive molecules for molecular synthesis.
    Type: Application
    Filed: October 28, 2010
    Publication date: March 27, 2014
    Inventors: Zhiyong Li, Philip J. Kuekes
  • Publication number: 20130207069
    Abstract: A metal-insulator transition switching device includes a first electrode and a second electrode. A channel region which includes a bulk metal-insulator transition material separates the first electrode and the second electrode. A method for forming a metal-insulator transition switching device includes depositing a layer of bulk metal-insulator transition material in between a first electrode and a second electrode to form a channel region and forming a gate electrode operatively connected to the channel region.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 15, 2013
    Inventors: Matthew D. Pickett, Philip J. Kuekes, R. Stanley Williams, Frederick Perner, Wei Wu, Alexandre M. Bratkovski
  • Patent number: 8507968
    Abstract: A memory device (100) includes a semiconductor wire including a source region (132), a drain region (134), and a channel region (130) between the source region (132) and the drain region (134). A gate structure that overlies the channel region includes a memristive portion (120) and a conductive portion (110) overlying the memristive portion (120).
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: August 13, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Dmitri B. Strukov, Philip J. Kuekes, Duncan Stewart, Zhiyong Li
  • Patent number: 8502198
    Abstract: A switching device includes at least one bottom electrode and at least one top electrode. The top electrode crosses the bottom electrode at a non-zero angle, thereby forming a junction. A metal oxide layer is established on at least one of the bottom electrode or the top electrode. A molecular layer including a monolayer of organic molecules and a source of water molecules is established in the junction. Upon introduction of a forward bias, the molecular layer facilitates a redox reaction between the electrodes, thereby reducing a tunneling gap between the electrodes.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 6, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: R. Stanley Williams, Zhiyong Li, Douglas Ohlberg, Philip J. Kuekes, Duncan Stewart
  • Patent number: 8471234
    Abstract: A multilayer memristive device includes a first electrode; a second electrode; a first memristive region and a second memristive region which created by directional ion implantation of dopant ions and are interposed between the first electrode and the second electrode; and mobile dopants which move within the first memristive region and the second memristive region in response to an applied electrical field.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: June 25, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: William M. Tong, Nathaniel J. Quitoriano, Duncan Stewart, Philip J. Kuekes
  • Patent number: 8455852
    Abstract: Various embodiments of the present invention are direct to nanoscale, reconfigurable memristor devices. In one aspect, a memristor device (500,600) comprises an active region (508,610) sandwiched between a first electrode (301) and a second electrode (302). The active region including a non-volatile dopant region (506,608) selectively formed and positioned within the active region.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: June 4, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nathaniel J. Quitoriano, Philip J. Kuekes, Jianhua Yang
  • Patent number: 8447146
    Abstract: A photonic interconnect method avoids high capacitance electric interconnects by using optical signals to communicate data between devices. The method can provide massively parallel information output by mapping logical addresses to frequency bands, so that modulation of a selected frequency band can encode information for a specific location corresponding to the logical address. Wavelength-specific directional couplers, modulators, and detectors, which can be fabricated at defects in a photonic bandgap crystal, can be employed for the photonic interconnect method. The interconnect method can be used for both classical and quantum information processing.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: May 21, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, Philip J. Kuekes, William J. Munro, Timothy P. Spiller, R. Stanley Williams, Sean D. Barrett
  • Patent number: 8437172
    Abstract: A decoding structure employs a main terminal (130), a first memristive switch (112) connected between the main terminal (130) and a first addressable terminal (132), and a second memristive switch (114) connected between the main terminal (130) and a second addressable terminal (134). The second memristive switch (114) is oriented so that a voltage polarity on the main terminal (130) that tends to turn the first memristive switch (112) on tends to turn the second memristive switch (114) off.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 7, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Marco Fiorentino, William M. Tong, Philip J. Kuekes, Jianhua Yang
  • Patent number: 8390323
    Abstract: One embodiment of the present invention is directed to hybrid-nanoscale/microscale device comprising a microscale layer that includes microscale and/or submicroscale circuit components and that provides an array of microscale or submicroscale pins across an interface surface; and at least two nanoscale-layer sub-layers within a nanoscale layer that interfaces to the microscale layer, each nanoscale-layer sub-layer containing regularly spaced, parallel nanowires, each nanowire of the at least two nanoscale-layer sub-layers in electrical contact with at most one pin provided by the microscale layer, the parallel nanowires of successive nanoscale-layer sub-layers having different directions, with the nanowires of successive nanoscale-layer sub-layers intersecting to form programmable crosspoints.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: March 5, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Dmitri Borisovich Strukov, Philip J. Kuekes
  • Publication number: 20130050409
    Abstract: Various embodiments of the present invention are directed to negative refractive index-based holograms that can be electronically controlled and dynamically reconfigured to generate one or more color three-dimensional holographic images. In one aspect, a hologram comprises a phase-control layer having a plurality of phase modulation elements. The phase-modulation elements are configured with a negative effective refractive index and selectively transmit wavelengths associated with one of three primary color wavelength. The hologram also includes an intensity-control layer including a plurality of intensity-control elements. One or more color three-dimensional images can be produced by electronically addressing the phase-modulation elements and intensity-control elements in order to phase shift and control the intensity of light transmitted through the hologram. A method for generating a color holographic image using the hologram is also provided, as is a system for generating a color holographic image.
    Type: Application
    Filed: April 13, 2009
    Publication date: February 28, 2013
    Inventors: Jingjing Li, Philip J. Kuekes
  • Patent number: 8384136
    Abstract: A demultiplexed nanowire sensor array for detecting different chemical and biological species are provided, comprising a sensor array and a demultiplexer array. Methods of detecting at least two chemical and/or biological species are also provided, using the demultiplexed nanowire sensor array.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: February 26, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: R. Stanley Williams, Philip J. Kuekes, Yong Chen
  • Patent number: 8357926
    Abstract: A gain-clamped semiconductor optical amplifier comprises: at least one first surface; at least one second surface, each second surface facing and electrically isolated from a respective first surface; a plurality of nanowires connecting each opposing pair of the first and second surfaces in a bridging configuration; and a signal waveguide overlapping the nanowires such that an optical signal traveling along the signal waveguide is amplified by energy provided by electrical excitation of the nanowires.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: January 22, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, M. Saif Islam, Philip J. Kuekes, Nobuhiko Kobayashi
  • Patent number: 8314475
    Abstract: One example of the present invention is a nanoscale electronic device comprising a first conductive electrode, a second conductive electrode, and an anisotropic dielectric material layered between the first and second electrodes having a permittivity in a direction approximately that of the shortest distance between the first and second electrodes less than the permittivity in other directions within the anisotropic dielectric material. Additional examples of the present invention include integrated circuits that contain multiple nanoscale electronic devices that each includes an anisotropic dielectric material layered between first and second electrodes having a permittivity in a direction approximately that of the shortest distance between the first and second electrodes less than the permittivity in other directions within the anisotropic dielectric material.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: November 20, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Gilberto Medeiros Ribeiro, Philip J. Kuekes, Alexandre M. Bratkovski, Janice H. Nickel