Patents by Inventor Philip J. Tobin

Philip J. Tobin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6383873
    Abstract: A finished structure (100) includes a semiconductive region (102), a first oxide layer (106), a second oxide layer (108), and a conductive layer (110). The first oxide layer (106) lies between the semiconductive region (102) and the second oxide layer (108); and the second oxide layer (108) lies between the first oxide layer (106) and the conductive layer (110). The first oxide layer (106) includes at least a portion that is amorphous or includes a first element, a second element, and a third element. In the latter, the first element is a metallic element, and each of the first, second, and third elements are different from each other. A process for forming a structure (100) includes forming a first layer (106) near a semiconductive region (102), forming a second layer (108) after forming the first layer (106), and forming a third layer (110) after forming the second layer (108). The first oxide layer (106) includes a metallic element and oxygen. The third layer (110) is a non-insulating layer.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: May 7, 2002
    Assignee: Motorola, Inc.
    Inventors: Rama I. Hegde, Philip J. Tobin, Amit Nangia
  • Patent number: 6376349
    Abstract: Semiconductor devices and conductive structures can be formed having a metallic layer. In one embodiment, a semiconductor device includes an amorphous metallic layer (22) and a crystalline metallic layer (42). The amorphous metallic layer (22) helps to reduce the likelihood of penetration of contaminants through the amorphous metallic layer (22). A more conductive crystalline metallic layer (42) can be formed on the amorphous metallic layer (22) to help keep resistivity relatively low. When forming a conductive structure, a metal-containing gas and a scavenger gas flow simultaneously during at least one point in time. The conductive structure may be part of a gate electrode.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: April 23, 2002
    Assignee: Motorola, Inc.
    Inventors: Philip J. Tobin, Olubunmi Adetutu, Bikas Maiti
  • Patent number: 6362071
    Abstract: In accordance with one embodiment of the present invention, a method is disclosed for forming a semiconductor device having an isolation region (601). A dielectric layer (108) is deposited and etched to form isolation regions (102, 605) having top portions that are narrower than their bottom portions, thereby a tapered isolation region is formed. Active regions (601, 603) are formed using an epitaxial process in the regions between the isolation regions. The resulting active regions (601, 603) have a greater amount of surface area near a top portion, than near a bottom portion. Transistors (721, 723) having opposite polarities are formed within the active areas.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: March 26, 2002
    Assignee: Motorola, Inc.
    Inventors: Bich-Yen Nguyen, William J. Taylor, Jr., Philip J. Tobin, David L. O'Meara, Percy V. Gilbert, Yeong-Jyh T. Lii, Victor S. Wang
  • Patent number: 6297173
    Abstract: A method for forming an oxynitride gate dielectric layer (202, 204) begins by providing a semiconductor substrate (200). This semiconductor substrate is cleaned via process steps (10-28). Optional nitridation and oxidation are performed via steps (50 and 60) to form a thin interface layer (202). Bulk oxynitride gate deposition occurs via a step (70) to form a bulk gate dielectric material (204) having custom tailored oxygen and nitrogen profile and concentration. A step (10) is then utilized to in situ cap this bulk dielectric layer (204) with a polysilicon or amorphous silicon layer (208). The layer (208) ensures that the custom tailors oxygen and nitrogen profile and concentration of the underlying gate dielectric (204) is preserved even in the presence of subsequent wafer exposure to oxygen ambients.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: October 2, 2001
    Assignee: Motorola, Inc.
    Inventors: Philip J. Tobin, Rama I. Hegde, Hsing-Huang Tseng, David O'Meara, Victor Wang
  • Patent number: 6255204
    Abstract: A first metal-containing material (22) is formed over a semiconductor device substrate (10). A second metal-containing material (32) is formed over the first metal containing material (22). The combination of the second metal-containing material (32) formed over the first metal-containing material (22) forms a metal stack (34). The metal stack (34) is annealed and a post-anneal stress of the metal stack (34) is less than an individual post-anneal stress of either one of the first conductive film (22) or the second conductive film (32).
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: July 3, 2001
    Assignee: Motorola, Inc.
    Inventors: Philip J. Tobin, Olubunmi O. Adetutu, Rama I. Hegde, Bikas Maiti
  • Patent number: 6136682
    Abstract: A method for forming an improved copper barrier layer begins by providing a silicon-containing layer (10). A physical vapor deposition process is then used to form a thin tantalum nitride amorphous layer (12). A thin amorphous titanium nitride layer (14) is then deposited over the amorphous tantalum nitride layer. A collective thickness of the tantalum nitride and titanium nitride layers 12 and 14 is roughly 400 angstroms or less. A copper material 16 is then deposited on top of the amorphous titanium nitride wherein the composite tantalum nitride layer 12 and titanium nitride layer 14 effectively prevents copper from diffusion from the layer 16 to the layer 10.
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: October 24, 2000
    Assignee: Motorola Inc.
    Inventors: Rama I. Hegde, Dean J. Denning, Jeffrey L. Klein, Philip J. Tobin
  • Patent number: 6084279
    Abstract: Metal semiconductor nitride gate electrodes (40, 70) are formed for use in a semiconductor device (60). The gate electrodes (40, 70) may be formed by sputter deposition, low pressure chemical vapor deposition (LPCVD), or plasma enhanced chemical vapor deposition (PECVD). The materials are expected to etch similar to silicon-containing compounds and may be etched in traditional halide-based etching chemistries. The metal semiconductor nitride gate electrodes (40, 70) are relatively stable, can be formed relatively thinner than traditional gate electrodes (40, 70) and work functions near the middle of the band gap for the material of the substrate (12).
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: July 4, 2000
    Assignee: Motorola Inc.
    Inventors: Bich-Yen Nguyen, J. Olufemi Olowolafe, Bikas Maiti, Olubunmi Adetutu, Philip J. Tobin
  • Patent number: 6063698
    Abstract: A method for forming a gate dielectric (14b) begins by providing a substrate (12). A high K dielectric layer (14a) is deposited overlying the substrate (12). The dielectric layer (14a) contains bulk traps (16) and interface traps (18). A polysilicon gate electrode (20) is then patterned and etched overlying the gate dielectric (14a) whereby the plasma etching of the gate electrode (20) results in substrate plasma damage (22). A post gate wet oxidation process is performed between 750.degree. C. and 850.degree. C. to reduce plasma etch damage and trap sites (16, 18) in order to provide an improved gate dielectric (14b). Source and drain electrodes (30) are then formed within the substrate and laterally adjacent the gate electrode (20) to form a transistor device having more consistent threshold voltages, improved subthreshold slope operation, reduced gate to channel leakage, and improved speed of operation.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: May 16, 2000
    Assignee: Motorola, Inc.
    Inventors: Hsing-Huang Tseng, Philip J. Tobin
  • Patent number: 6027961
    Abstract: In one embodiment, a metal layer (18) is formed over a gate dielectric layer (14, 16) on a semiconductor substrate. A masking layer (20) is patterned to mask a portion of the metal layer (18). An exposed portion of the metal layer (18) is nitrided to form a conductive nitride layer (24). The masking layer (20) is removed and the conductive nitride layer (24) is patterned to form a first gate electrode (23) having a first work function value, and the conductive layer (18) is patterned to form a second gate electrode (25) having a second work function value which is different from that of the first work function value.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: February 22, 2000
    Assignee: Motorola, Inc.
    Inventors: Bikas Maiti, Philip J. Tobin, C. Joseph Mogab, Christopher Hobbs, Larry E. Frisa
  • Patent number: 6020024
    Abstract: A method for forming a metal gate (20) structure begins by providing a semiconductor substrate (12). The semiconductor substrate (12) is cleaned to reduce trap sites. A nitrided layer (14) having a thickness of less than approximately 20 Angstroms is formed over the substrate (12). This nitrided layer prevents the formation of an oxide at the substrate interface and has a dielectric constant greater than 3.9. After the formation of the nitrided layer(14), a metal oxide layer (16) having a permittivity value of greater than roughly 8.0 is formed over the nitrided layer (14). A metal gate (20) is formed over the nitrided layer whereby the remaining composite gate dielectric (14 and 16) has a larger physical thickness but a high-performance equivalent oxide thickness (EOT).
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: February 1, 2000
    Assignee: Motorola, Inc.
    Inventors: Bikas Maiti, Philip J. Tobin, Rama I. Hegde, Jesus Cuellar
  • Patent number: 5972804
    Abstract: A method for forming an oxynitride gate dielectric layer (202, 204) begins by providing a semiconductor substrate (200). This semiconductor substrate is cleaned via process steps (10-28). Optional nitridation and oxidation are performed via steps (50 and 60) to form a thin interface layer (202). Bulk oxynitride gate deposition occurs via a step (70) to form a bulk gate dielectric material (204) having custom tailored oxygen and nitrogen profile and concentration. A step (10) is then utilized to in situ cap this bulk dielectric layer (204) with a polysilicon or amorphous silicon layer (208). The layer (208) ensures that the custom tailors oxygen and nitrogen profile and concentration of the underlying gate dielectric (204) is preserved even in the presence of subsequent wafer exposure to oxygen ambients.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: October 26, 1999
    Assignee: Motorola, Inc.
    Inventors: Philip J. Tobin, Rama I. Hegde, Hsing-Huang Tseng, David O'Meara, Victor Wang
  • Patent number: 5885870
    Abstract: In one embodiment a non-volatile memory device having improved reliability is formed by oxidizing a first portion of a semiconductor substrate (12) to form a first silicon dioxide layer (14). The first silicon dioxide layer (14) is then annealed and second portion of the silicon substrate, underlying the annealed silicon dioxide layer (16), is then oxidized to form a second silicon dioxide layer (18). The annealed silicon dioxide layer (16) and the second silicon dioxide layer (18) form a pre-oxide layer (20). The pre-oxide layer (20) is then nitrided to form a nitrided oxide dielectric layer (22). A floating gate is then formed overlying the nitrided oxide dielectric layer (22), which serves as the tunnel oxide for the device. Tunnel oxides formed with the inventive process are less susceptible to stress-induced leakage, and therefore, devices with improved data retention and endurance may be fabricated.
    Type: Grant
    Filed: July 2, 1997
    Date of Patent: March 23, 1999
    Assignee: Motorola, Inc.
    Inventors: Bikas Maiti, Philip J. Tobin, Sergio A. Ajuria
  • Patent number: 5830802
    Abstract: A process for reducing halogen concentration in a material layer (56) includes the deposition of a dielectric layer (58) overlying the material layer (56). An annealing process is carried out to diffuse halogen atoms from the material layer (56) into the overlying dielectric layer (58). Once the diffusion process is complete, the dielectric layer (58) is removed.
    Type: Grant
    Filed: August 31, 1995
    Date of Patent: November 3, 1998
    Assignee: Motorola Inc.
    Inventors: Hsing-Huang Tseng, Philip J. Tobin, Bikas Maiti
  • Patent number: 5726087
    Abstract: A semiconductor dielectric (10) is formed by providing a base layer (12) having a surface. A thin interface layer (13) is formed at the surface of the base layer (12). The thin interface layer has a substantial concentration of one of either nitrogen or fluorine. A thermal oxide layer (14) is formed overlying the interface layer (13). A deposited dielectric layer (16) is formed overlying the thermal oxide layer (14). The deposited dielectric layer (16) is optionally densified by a thermal heat cycle. The deposited dielectric layer (16) has micropores that are misaligned to micropores in the thermal oxide layer (14) to provide enhanced features.
    Type: Grant
    Filed: June 9, 1994
    Date of Patent: March 10, 1998
    Assignee: Motorola, Inc.
    Inventors: Hsing-Huang Tseng, Philip J. Tobin
  • Patent number: 5712208
    Abstract: A semiconductor dielectric (10) is formed by providing a base layer (12) having a surface. A thin interface layer (13) is formed at the surface of the base layer (12). The thin interface layer has a substantial concentration of both nitrogen and fluorine. A thermal oxide layer (14) is formed overlying the interface layer (13). A deposited dielectric layer (16) is formed overlying the thermal oxide layer (14). The deposited dielectric layer (16) is optionally densified by a thermal heat cycle. The deposited dielectric layer (16) has micropores that are misaligned to micropores in the thermal oxide layer (14) to provide enhanced features which the nitrogen/fluorine interface further improves the dielectric's features.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: January 27, 1998
    Assignee: Motorola, Inc.
    Inventors: Hsing-Huang Tseng, Philip J. Tobin, Keith E. Witek
  • Patent number: 5707889
    Abstract: An annealed amorphous silicon layer is formed prior to forming field isolation regions when using in a LOCOS field isolation process. The annealed amorphous silicon layer helps to reduce encroachment compared to conventional LOCOS field isolation process and helps to reduce the likelihood of forming pits within a substrate compared to a PBL field isolation process. The annealed amorphous silicon layer may be used in forming field isolation regions that defines the active regions between transistors including MOSFETs and bipolar transistors. Doped silicon or a silicon-rich silicon nitride layer may be used in place of conventional materials. The anneal of the amorphous silicon layer may be performed after forming a silicon nitride layer if the silicon nitride layer is deposited at a temperature no higher than 600 degrees Celsius.
    Type: Grant
    Filed: May 13, 1996
    Date of Patent: January 13, 1998
    Assignee: Motorola Inc.
    Inventors: Ting Chen Hsu, Laureen H. Parker, David G. Kolar, Philip J. Tobin, Hsing-Huang Tseng, Lisa K. Garling, Vida Ilderem
  • Patent number: 5580815
    Abstract: An annealed amorphous silicon layer is formed prior to forming field isolation regions when using in a LOCOS field isolation process. The annealed amorphous silicon layer helps to reduce encroachment compared to conventional LOCOS field isolation process and helps to reduce the likelihood of forming pits within a substrate compared to a PBL field isolation process. The annealed amorphous silicon layer may be used in forming field isolation regions that defines the active regions between transistors including MOSFETs and bipolar transistors. Doped silicon or a silicon-rich silicon nitride layer may be used in place of conventional materials. The anneal of the amorphous silicon layer may be performed after forming a silicon nitride layer if the silicon nitride layer is deposited at a temperature no higher than 600 degrees Celsius.
    Type: Grant
    Filed: February 22, 1994
    Date of Patent: December 3, 1996
    Assignee: Motorola Inc.
    Inventors: Ting C. Hsu, Laureen H. Parker, David G. Kolar, Philip J. Tobin, Hsing-Huang Tseng, Lisa K. Garling, Vida Ilderem
  • Patent number: 5571734
    Abstract: This disclosure reveals a manufacturable and controllable method to fabricate a dielectric which increases the device current drive. A nitrogen-containing ambient is used to oxidize a surface of a substrate (10) to form a nitrogen-containing dielectric (12). Then a fluorine-containing specie (F) is introduced, preferably through implanting, into a gate electrode (20) overlying the nitrogen-containing dielectric. The fluorine is then driven into the underlying nitrogen-containing dielectric. A fluorinated nitrogen-containing region (14') is expected to form at the interface between dielectric (12') and substrate (10). The interaction between fluorine and nitrogen increases the peak transconductance as well as the transconductance at a high electric field for the dielectric. Therefore, the overall current drive is increased by this approach.
    Type: Grant
    Filed: October 3, 1994
    Date of Patent: November 5, 1996
    Assignee: Motorola, Inc.
    Inventors: Hsing-Huang Tseng, Philip J. Tobin
  • Patent number: 5552332
    Abstract: A process for the fabrication of an MOSFET device includes the formation of a buffer layer (28) overlying the surface of a semiconductor substrate (14) adjacent to a gate electrode (18). A defect compensating species is diffused through the buffer layer (28) and through a gate dielectric layer (12) to form a defect-compensating region (30) at the surface (14) of the semiconductor substrate (10). The defect-compensating region (30) in conjunction with the buffer layer (28) minimize and control the population of point defects in the channel region (22) of the semiconductor substrate (10). By controlling the population of point defects in the channel region (22), a substantially uniform doping profile is maintained in a shallow doped region (16) formed in the semiconductor substrate (10) at the substrate surface (14). The maintenance of a uniform doping profile in the shallow doped region (16) results in improved threshold voltage stability as the lateral dimension of the channel region (22) is reduced.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: September 3, 1996
    Assignee: Motorola, Inc.
    Inventors: Hsing-Huang Tseng, Philip J. Tobin, Paul G. Y. Tsui, Shih W. Sun, Stephen S. Poon
  • Patent number: 5543635
    Abstract: An under-gated thin film transistor (54) having low leakage current and a high on/off current ratio is formed using a composite layer (40) of semiconducting material. In one embodiment a composite layer (40) of semiconducting layer is formed by depositing two distinct layers (34, 38) of semiconducting material over the transistor gate electrode (18). The composite layer (40) is then patterned and implanted with ions to form a source region (46) and a drain region (48) within the composite layer (40), and to define a channel region (50) and an offset drain region (52) within the composite layer (40).
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: August 6, 1996
    Assignee: Motorola, Inc.
    Inventors: Bich-Yen Nguyen, Thomas F. McNelly, Philip J. Tobin, James D. Hayden