Patents by Inventor Philip Jason Stephanou

Philip Jason Stephanou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9000656
    Abstract: This disclosure provides systems, apparatus, and devices and methods of fabrication for electromechanical devices. In one implementation, an apparatus includes a metal proof mass and a piezoelectric component as part of a MEMS device. Such apparatus can be particularly useful for MEMS gyroscope devices. For instance, the metal proof mass, which may have a density several times larger than that of silicon, is capable of reducing the quadrature and bias error in a MEMS gyroscope device, and capable of increasing the sensitivity of the MEMS gyroscope device.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 7, 2015
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Justin Phelps Black, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou, Kurt Edward Peterson, Cenk Acar, Ravindra Vaman Shenoy, Nicholas Ian Buchan
  • Publication number: 20150091179
    Abstract: A semiconductor device comprising a second surface of a logic die and a second surface of a via bar coupled to a first surface of a substrate, a second surface of a memory die coupled to a first surface of the via bar, a portion of the second surface of the memory die extending over the first surface of the logic die, such that the logic die and the memory die are vertically staggered, and the memory die electrically coupled to the logic die through the via bar. The via bar can be formed from glass, and include through-glass vias (TGVs) and embedded passives such as resistors, capacitors, and inductors. The semiconductor device can be formed as a single package or a package-on-package structure with the via bar and the memory die encapsulated in a package and the substrate and logic die in another package.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Ravindra Vaman SHENOY, Kwan-yu LAI, Jon Bradley LASITER, Philip Jason STEPHANOU, Donald William KIDWELL, JR., Evgeni GOUSEV
  • Publication number: 20150035638
    Abstract: A particular device includes a coil and a discontinuous magnetic core. The discontinuous magnetic core includes a first elongated portion, a second elongated portion, and at least two curved portions, where the portions are coplanar and physically separated from each other. The discontinuous magnetic core is arranged to form a discontinuous loop. The discontinuous magnetic core is deposited as a first layer above a dielectric substrate. A first portion of the coil extends above a first surface of the magnetic core. A second portion of the coil extends below a second surface of the magnetic core. The second portion of the coil is electrically coupled to the first portion of the coil. The second surface of the magnetic core is opposite the first surface of the magnetic core.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Applicant: QUALCOMM MEMS Technologies. Inc.
    Inventors: Philip Jason Stephanou, Jitae Kim, Ravindra Vaman Shenoy, Kwan-yu Lai
  • Patent number: 8884725
    Abstract: This disclosure provides implementations of electromechanical systems (EMS) resonator structures, devices, apparatus, systems, and related processes. In one aspect, a device includes an evanescent-mode electromagnetic-wave cavity resonator. In some implementations, the cavity resonator includes a lower cavity portion and an upper cavity portion that together form a volume. The cavity resonator also includes an in-plane lithographically-defined resonator structure having a portion that is located at least partially within the volume to support one or more evanescent electromagnetic wave modes. In some implementations, an upper surface of the resonator structure is connected with the upper cavity portion while a lower mating surface is connected with the lower cavity portion.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: November 11, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, Sang-June Park, Ravindra V. Shenoy
  • Publication number: 20140328504
    Abstract: This disclosure provides systems, methods and apparatus for microspeaker devices. In one aspect, a microspeaker element may include a deformable dielectric membrane that spans a speaker cavity. The deformable dielectric membrane can include a piezoactuator and a dielectric layer. Upon application of a driving signal to the piezoactuator, the dielectric layer can deflect, producing sound. In some implementations, an array of microspeaker elements can be encapsulated between a glass substrate and a cover glass. Sound generated by the microspeaker elements can be emitted through a speaker grill formed in the cover glass.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Philip Jason Stephanou, David William Burns, Ravindra V. Shenoy
  • Patent number: 8824706
    Abstract: This disclosure provides systems, methods and apparatus for glass-encapsulated microphones. In one aspect, a glass-encapsulated microphone may include a glass substrate, an electromechanical microphone device, an integrated circuit device, and a cover glass. The cover glass may be bonded to the glass substrate with an adhesive, such as epoxy, or a metal bond ring. The cover glass may have any of a number of configurations. In some configurations, the cover glass may define an aperture for the electromechanical microphone device at an edge of the glass-encapsulated microphone. In some configurations, the cover glass may define a cavity to accommodate the integrated circuit device that is separate from a cavity that accommodates the electromechanical microphone device.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: September 2, 2014
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, David William Burns
  • Patent number: 8811636
    Abstract: This disclosure provides systems, methods and apparatus for microspeaker devices. In one aspect, a microspeaker element may include a deformable dielectric membrane that spans a speaker cavity. The deformable dielectric membrane can include a piezoactuator and a dielectric layer. Upon application of a driving signal to the piezoactuator, the dielectric layer can deflect, producing sound. In some implementations, an array of microspeaker elements can be encapsulated between a glass substrate and a cover glass. Sound generated by the microspeaker elements can be emitted through a speaker grill formed in the cover glass.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: August 19, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, David William Burns, Ravindra V. Shenoy
  • Publication number: 20140177188
    Abstract: This disclosure provides systems, methods and apparatus for packaging of dissimilar devices using electromagnetic radiation from a laser. In one aspect, an apparatus can include a first substrate, a second substrate, and a first device and a second device disposed on the second substrate. A first metal ring on the first substrate contacts a second metal ring on a second substrate, and is heated by a first electromagnetic radiation from a laser to enclose a first cavity containing the first device. A third metal ring on the first substrate contacts a fourth metal ring on the second substrate, and is heated by a second electromagnetic radiation to enclose a second cavity containing the second device. Enclosing the first cavity may be performed under a first atmosphere, and the enclosing the second cavity may be performed under a second, different atmosphere.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Philip Jason Stephanou, Ravindra V. Shenoy, Kwan-Yu Lai, James G. Shook, Nassim Khonsari, Peter Jings Lin, Tsongming Kao, Peng Cheng Lin
  • Publication number: 20140146435
    Abstract: This disclosure provides systems, methods and apparatus for providing an in-plane electromechanical systems (EMS) varactor. In one aspect, the in-plane EMS varactor may include in-plane relative translation between a second portion and a first portion. Such translation may cause a change in a gap or overlap between first electrodes that remain fixed with respect to the first portion and second electrodes that remain fixed with respect to the second portion that may cause a change in capacitance between the first and second electrodes. In some implementations, the configuration of the second portion and the first portion may be either of two mechanically bi-stable states.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Philip Jason Stephanou, Ming-Hau Tung, Ravindra V. Shenoy
  • Patent number: 8724832
    Abstract: This disclosure provides systems, methods and apparatus for sense elements in an electromechanical microphone device. In one aspect, a piezoelectric sense element may include a glass substrate, electrode layers, piezoelectric layers, and elastic layers. The elastic layers may serve to modify the neutral plane of the piezoelectric sense element. Including an elastic layer or layers to modify the neutral plane of the piezoelectric sense element may serve to configure the sense element such that the piezoelectric layer generates a voltage in response to a sound wave or may serve to increase the sensitivity of the sense element.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: May 13, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, David William Burns
  • Publication number: 20140125432
    Abstract: This disclosure provides implementations of methods, apparatus and systems for producing acoustic wave devices and for selectively modifying one or more acoustic or electromechanical characteristics of such devices. In one aspect, a method includes depositing a structural layer over a substrate. The structural layer includes a plurality of structural portions, each being positioned over a corresponding device region. The method also includes arranging a mask layer over the structural layer. The mask layer includes a plurality of mask portions, each including a number of mask openings that expose a corresponding region of the structural portion. The method also includes accelerating dopant particles toward the mask layer. The accelerated dopant particles that proceed through the mask openings are impacted into the corresponding structural portion.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Philip Jason Stephanou, Chengjie Zuo, Changhan Hobie Yun, Sang-June Park, Charles Chengyea Leu, Jonghae Kim, Ravindra V. Shenoy
  • Publication number: 20140111064
    Abstract: This disclosure provides systems, methods and apparatus related to acoustic resonators that include composite transduction layers for enabling selective tuning of one or more acoustic or electromechanical properties. In one aspect, a resonator structure includes one or more first electrodes, one or more second electrodes, and a transduction layer arranged between the first and second electrodes. The transduction layer includes a plurality of constituent layers. In some implementations, the constituent layers include one or more first piezoelectric layers and one or more second piezoelectric layers. The transduction layer is configured to, responsive to signals provided to the first and second electrodes, provide at least a first mode of vibration of the transduction layer with a displacement component along the z axis and at least a second mode of vibration of the transduction layer with a displacement component along the plane of the x axis and they axis.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Chengjie Zuo, Jonghae Kim, Changhan Hobie Yun, Sang-June Park, Philip Jason Stephanou, Chi Shun Lo, Robert Paul Mikulka, Mario Francisco Velez, Ravindra V. Shenoy, Matthew Michael Nowak
  • Publication number: 20140104284
    Abstract: This disclosure provides systems, methods, and apparatus for through substrate via inductors. In one aspect, a cavity is defined in a glass substrate. At least two metal bars are in the cavity. A first end of each metal bar is proximate a first surface of the substrate, and a second end of each metal bar is proximate a second surface of the substrate. A metal trace connects a first metal bar and a second metal bar. In some instances, one or more dielectric layers can be disposed on surfaces of the substrate. In some instances, the metal bars and the metal trace define an inductor. The inductor can have a degree of flexibility corresponding to a variable inductance. Metal turns can be arranged in a solenoidal or toroidal configuration. The toroidal inductor can have tapered traces and/or thermal ground planes. Transformers and resonator circuitry can be realized.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ravindra V. Shenoy, Jitae Kim, Kwan-yu Lai, Jon Bradley Lasiter, Philip Jason Stephanou, Donald William Kidwell, Evgeni Petrovich Gousev
  • Publication number: 20140104288
    Abstract: This disclosure provides systems, methods, and apparatus for through substrate via inductors. In one aspect, a cavity is defined in a glass substrate. At least two metal bars are in the cavity. A first end of each metal bar is proximate a first surface of the substrate, and a second end of each metal bar is proximate a second surface of the substrate. A metal trace connects a first metal bar and a second metal bar. In some instances, one or more dielectric layers can be disposed on surfaces of the substrate. In some instances, the metal bars and the metal trace define an inductor. The inductor can have a degree of flexibility corresponding to a variable inductance. Metal turns can be arranged in a solenoidal or toroidal configuration. The toroidal inductor can have tapered traces and/or thermal ground planes. Transformers and resonator circuitry can be realized.
    Type: Application
    Filed: November 20, 2012
    Publication date: April 17, 2014
    Inventors: Ravindra V. Shenoy, Jitae Kim, Kwan-yu Lai, Jon Bradley Lasiter, Philip Jason Stephanou, Donald William Kidwell, Evgeni Petrovich Gousev
  • Publication number: 20140041174
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Some gyroscopes include a drive frame, a central anchor and a plurality of drive beams disposed on opposing sides of the central anchor. The drive beams may connect the drive frame to the central anchor. The drive beams may include a piezoelectric layer and may be configured to cause the drive frame to oscillate torsionally in a plane of the drive beams. The gyroscope may also include a proof mass and a plurality of piezoelectric sense beams. At least some components may be formed from plated metal. The drive frame may be disposed within the proof mass. The drive beams may constrain the drive frame to rotate substantially in the plane of the drive beams. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20140035702
    Abstract: This disclosure provides implementations of filters and filter topologies, circuits, structures, devices, apparatus, systems, and related processes. In one aspect, a device includes one or more LC resonant circuit stages. In some implementations, each LC stage includes an inductor and a capacitor. Each LC stage also has a corresponding resonant frequency. The one or more LC stages are arranged to produce an unmodified passband over a range of frequencies having a corresponding bandwidth. One or more microelectromechanical systems (MEMS) resonators are arranged with the one or more LC stages. The one or more MEMS resonators are arranged with the one or more LC stages so as to modify characteristics of the unmodified passband such that the hybrid filter produces a modified passband having a modified bandwidth and one or more other modified band characteristics.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Justin Phelps Black, Philip Jason Stephanou, Jonghae Kim, Je-Hsiung Jeffrey Lan, Sang-June Park, Changhan Hobie Yun, Chi Shun Lo, Chengjie Zuo
  • Publication number: 20140035935
    Abstract: This disclosure provides systems, methods and apparatus for glass via bars that can be used in compact three-dimensional packages, including embedded wafer level packages. The glass via bars can provide high density electrical interconnections in a package. In some implementations, the glass via bars can include integrated passive components. Methods of fabricating glass via bars are provided. In some implementations, the methods can include patterning and etching photo-patternable glass substrates. Packaging methods employing glass via bars are also provided.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ravindra V. Shenoy, Kwan-Yu Lai, Jon Bradley Lasiter, Jonghae Kim, Mario Francisco Velez, Chi Shun Lo, Donald William Kidwell, Philip Jason Stephanou, Justin Phelps Black, Evgeni Petrovich Gousev
  • Publication number: 20140035892
    Abstract: This disclosure provides systems, methods and apparatus for glass via bars that can be used in compact three-dimensional packages, including package-on-packages (PoPs). The glass via bars can provide high density electrical interconnections in the PoPs. In some implementations, the glass via bars can include integrated passive components. Packaging methods employing glass via bars are also provided.
    Type: Application
    Filed: January 23, 2013
    Publication date: February 6, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ravindra V. Shenoy, Kwan-Yu Lai, Philip Jason Stephanou, Mario Francisco Velez, Jonghae Kim, Evgeni Petrovich Gousev
  • Publication number: 20140013557
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a sense frame, a proof mass disposed outside the sense frame, a pair of anchors and a plurality of drive beams. The plurality of drive beams may be disposed on opposing sides of the sense frame and between the pair of anchors. The drive beams may connect the sense frame to the proof mass. The drive beams may be configured to cause torsional oscillations of the proof mass substantially in a first plane of the drive beams. The sense frame may be substantially decoupled from the drive motions of the proof mass. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: July 31, 2013
    Publication date: January 16, 2014
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20130333175
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a central anchor, a sense frame disposed around the central anchor, a plurality of sense beams configured for connecting the sense frame to the central anchor and a drive frame disposed around and coupled to the sense frame. The gyroscope may include pairs of drive beams disposed on opposing sides of the sense frame. The gyroscope may include a drive frame suspension for substantially restricting a drive motion of the drive frame to that of a substantially linear displacement along the first axis. The sense frame may be substantially decoupled from drive motions of the drive frame. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: July 31, 2013
    Publication date: December 19, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou