Patents by Inventor Philippe Gorisse

Philippe Gorisse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11422170
    Abstract: A digital current sensing circuit and related apparatus is provided. In one aspect, a digital current sensing circuit can be configured to estimate a battery current in a coupled circuit based on a voltage corresponding to the battery current. More specifically, the digital current sensing circuit generates an analog sense current proportional to the battery current based on the voltage and digitally processes the analog sense current to generate a battery current indication signal indicative of an estimation of the battery current. In another aspect, a number of digital current sensing circuits can be provided in an apparatus to concurrently estimate a number of battery currents in a number of circuits (e.g., charge pump circuits). As a result, it may be possible to test, debug, and/or fine-tune the apparatus based on the estimated battery currents for improved performance.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: August 23, 2022
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Philippe Gorisse, Christopher Truong Ngo
  • Patent number: 11268990
    Abstract: An electrical current measurement circuit is provided. The electrical current measurement circuit is configured to receive a sense current proportionally related to an electrical current of interest to continuously charge a capacitor to a sense voltage. The electrical current measurement circuit is configured to determine whether the sense voltage reaches a predefined voltage threshold and reduce the sense voltage to below the predefined voltage threshold in response to the sense voltage reaching the predefined voltage threshold. The electrical current measurement circuit counts each occurrence of the sense voltage reaching the predefined voltage threshold and quantifies the electrical current based on a total count of the sense voltage reaching the predefined voltage threshold during the predefined measurement period.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 8, 2022
    Assignee: QORVO US, INC.
    Inventors: Nadim Khlat, Philippe Gorisse, Christopher Truong Ngo
  • Patent number: 10903796
    Abstract: A voltage generation circuit and related envelope tracking (ET) amplifier apparatus is provided. In examples discussed herein, a voltage generation circuit can be provided in an ET amplifier apparatus to provide a supply voltage to a voltage amplifier(s) that is configured to generate an ET voltage for an amplifier circuit(s). In a non-limiting example, the voltage amplifier(s) receives an ET target voltage signal corresponding to a time-variant target voltage envelope and generates the ET voltage conforming to the time-variant target voltage envelope. The voltage generation circuit is configured to generate one or more supply voltages and selectively provide one of the supply voltages to the voltage amplifier(s) in accordance to the time-variant target voltage envelope. By selectively providing the supply voltage based on the time-variant target voltage envelope, it may be possible to improve efficiency of the voltage amplifier, thus helping to improve efficiency and linearity of the amplifier circuit(s).
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: January 26, 2021
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay, Philippe Gorisse
  • Patent number: 10868499
    Abstract: An envelope tracking (ET) voltage tracker circuit is provided. The ET voltage tracker circuit is configured to generate a time-variant voltage based on a time-variant target voltage, which further corresponds to a time-variant power envelope of a radio frequency (RF) signal. The time-variant voltage may be provided to an amplifier circuit(s) for amplifying the RF signal. The ET voltage tracker circuit includes a target voltage processing circuit configured to pre-process the time-variant target voltage. More specifically, the target voltage processing circuit is configured to pre-process the time-variant target voltage based on a high-order transfer function when the time-variant target voltage corresponds to a higher modulation bandwidth (e.g., >80 MHz). As a result, it may be possible to improve temporal alignment between the time-variant voltage and the time-variant target voltage at the amplifier circuit(s), thus allowing the amplifier circuit(s) to operate with improved efficiency and linearity.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 15, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Philippe Gorisse, Nadim Khlat, Jean-Frederic Chiron
  • Publication number: 20200200805
    Abstract: An electrical current measurement circuit is provided. The electrical current measurement circuit is configured to receive a sense current proportionally related to an electrical current of interest to continuously charge a capacitor to a sense voltage. The electrical current measurement circuit is configured to determine whether the sense voltage reaches a predefined voltage threshold and reduce the sense voltage to below the predefined voltage threshold in response to the sense voltage reaching the predefined voltage threshold. The electrical current measurement circuit counts each occurrence of the sense voltage reaching the predefined voltage threshold and quantifies the electrical current based on a total count of the sense voltage reaching the predefined voltage threshold during the predefined measurement period.
    Type: Application
    Filed: June 20, 2019
    Publication date: June 25, 2020
    Inventors: Nadim Khlat, Philippe Gorisse, Christopher Truong Ngo
  • Patent number: 10693420
    Abstract: A PA power supply, which includes a first ET power supply, power supply control circuitry, a first PMOS switching element, and a second PMOS switching element, is disclosed. During a first operating mode, the power supply control circuitry selects an OFF state of the first PMOS switching element, selects an ON state of the second PMOS switching element, and adjusts a voltage of a first switch control signal to maintain the OFF state of the first PMOS switching element using a voltage at a source of the first PMOS switching element and a voltage at a drain of the first PMOS switching element; the PA power supply provides a first PA power supply signal; and the first ET power supply provides a first ET power supply signal, such that the first PA power supply signal is based on the first ET power supply signal.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: June 23, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Manbir Singh Nag, Michael R. Kay, Philippe Gorisse, Nadim Khlat
  • Publication number: 20200127612
    Abstract: A voltage generation circuit and related envelope tracking (ET) amplifier apparatus is provided. In examples discussed herein, a voltage generation circuit can be provided in an ET amplifier apparatus to provide a supply voltage to a voltage amplifier(s) that is configured to generate an ET voltage for an amplifier circuit(s). In a non-limiting example, the voltage amplifier(s) receives an ET target voltage signal corresponding to a time-variant target voltage envelope and generates the ET voltage conforming to the time-variant target voltage envelope. The voltage generation circuit is configured to generate one or more supply voltages and selectively provide one of the supply voltages to the voltage amplifier(s) in accordance to the time-variant target voltage envelope. By selectively providing the supply voltage based on the time-variant target voltage envelope, it may be possible to improve efficiency of the voltage amplifier, thus helping to improve efficiency and linearity of the amplifier circuit(s).
    Type: Application
    Filed: February 19, 2019
    Publication date: April 23, 2020
    Inventors: Nadim Khlat, Michael R. Kay, Philippe Gorisse
  • Publication number: 20200036338
    Abstract: An envelope tracking (ET) voltage tracker circuit is provided. The ET voltage tracker circuit is configured to generate a time-variant voltage based on a time-variant target voltage, which further corresponds to a time-variant power envelope of a radio frequency (RF) signal. The time-variant voltage may be provided to an amplifier circuit(s) for amplifying the RF signal. The ET voltage tracker circuit includes a target voltage processing circuit configured to pre-process the time-variant target voltage. More specifically, the target voltage processing circuit is configured to pre-process the time-variant target voltage based on a high-order transfer function when the time-variant target voltage corresponds to a higher modulation bandwidth (e.g., >80 MHz). As a result, it may be possible to improve temporal alignment between the time-variant voltage and the time-variant target voltage at the amplifier circuit(s), thus allowing the amplifier circuit(s) to operate with improved efficiency and linearity.
    Type: Application
    Filed: November 26, 2018
    Publication date: January 30, 2020
    Inventors: Philippe Gorisse, Nadim Khlat, Jean-Frederic Chiron
  • Publication number: 20200025808
    Abstract: A digital current sensing circuit and related apparatus is provided. In one aspect, a digital current sensing circuit can be configured to estimate a battery current in a coupled circuit based on a voltage corresponding to the battery current. More specifically, the digital current sensing circuit generates an analog sense current proportional to the battery current based on the voltage and digitally processes the analog sense current to generate a battery current indication signal indicative of an estimation of the battery current. In another aspect, a number of digital current sensing circuits can be provided in an apparatus to concurrently estimate a number of battery currents in a number of circuits (e.g., charge pump circuits). As a result, it may be possible to test, debug, and/or fine-tune the apparatus based on the estimated battery currents for improved performance.
    Type: Application
    Filed: November 15, 2018
    Publication date: January 23, 2020
    Inventors: Nadim Khlat, Philippe Gorisse, Christopher Truong Ngo
  • Patent number: 10530311
    Abstract: Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes ET tracker circuitry configured to provide an ET modulated voltage, which tracks an ET modulated target voltage, to an amplifier circuit(s) for amplifying a radio frequency (RF) signal. The ET amplifier circuit also includes fast switcher circuitry that is activated to provide an alternate current (AC) current to the amplifier circuit(s) when the RF signal includes a higher number of resource blocks (RBs). However, the fast switcher circuitry and its associated control circuitry may incur a processing delay that can cause the fast switcher circuitry to lag behind the ET modulated target voltage. As such, the ET amplifier circuit further includes timing adjustment circuitry to help compensate for the processing delay, thus helping to maintain efficiency of the ET tracker circuitry for improved performance of the ET amplifier circuit.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: January 7, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Philippe Gorisse, Jeffrey D. Potts, Michael R. Kay
  • Publication number: 20190036493
    Abstract: Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes ET tracker circuitry configured to provide an ET modulated voltage, which tracks an ET modulated target voltage, to an amplifier circuit(s) for amplifying a radio frequency (RF) signal. The ET amplifier circuit also includes fast switcher circuitry that is activated to provide an alternate current (AC) current to the amplifier circuit(s) when the RF signal includes a higher number of resource blocks (RBs). However, the fast switcher circuitry and its associated control circuitry may incur a processing delay that can cause the fast switcher circuitry to lag behind the ET modulated target voltage. As such, the ET amplifier circuit further includes timing adjustment circuitry to help compensate for the processing delay, thus helping to maintain efficiency of the ET tracker circuitry for improved performance of the ET amplifier circuit.
    Type: Application
    Filed: October 3, 2018
    Publication date: January 31, 2019
    Inventors: Nadim Khlat, Philippe Gorisse, Jeffrey D. Potts, Michael R. Kay
  • Patent number: 10193502
    Abstract: A dual-mode envelope tracking (ET) power management circuit is provided. An ET amplifier(s) in the dual-mode ET power management circuit is capable of supporting normal-power user equipment (NPUE) mode and high-power user equipment (HPUE) mode. In the NPUE mode, the ET amplifier(s) amplifies a radio frequency (RF) signal(s) to an NPUE voltage based on a supply voltage for transmission in an NPUE output power. In the HPUE mode, the ET amplifier(s) amplifies the RF signal(s) to an HPUE voltage higher than the NPUE voltage based on a boosted supply voltage higher than the supply voltage for transmission in an HPUE output power higher than the NPUE output power. The ET amplifier(s) maintains a constant load line between the NPUE mode and the HPUE mode. By maintaining the constant load line, it is possible to maintain efficiency of the ET amplifier(s) in both the NPUE mode and the HPUE mode.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: January 29, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Andrew F. Folkmann, Michael R. Kay, Philippe Gorisse
  • Patent number: 10181826
    Abstract: Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes ET tracker circuitry configured to provide an ET modulated voltage, which tracks an ET modulated target voltage, to an amplifier circuit(s) for amplifying a radio frequency (RF) signal. The ET amplifier circuit also includes fast switcher circuitry that is activated to provide an alternate current (AC) current to the amplifier circuit(s) when the RF signal includes a higher number of resource blocks (RBs). However, the fast switcher circuitry and its associated control circuitry may incur a processing delay that can cause the fast switcher circuitry to lag behind the ET modulated target voltage. As such, the ET amplifier circuit further includes timing adjustment circuitry to help compensate for the processing delay, thus helping to maintain efficiency of the ET tracker circuitry for improved performance of the ET amplifier circuit.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: January 15, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Philippe Gorisse, Jeffrey D. Potts, Michael R. Kay
  • Publication number: 20180375475
    Abstract: A PA power supply, which includes a first ET power supply, power supply control circuitry, a first PMOS switching element, and a second PMOS switching element, is disclosed. During a first operating mode, the power supply control circuitry selects an OFF state of the first PMOS switching element, selects an ON state of the second PMOS switching element, and adjusts a voltage of a first switch control signal to maintain the OFF state of the first PMOS switching element using a voltage at a source of the first PMOS switching element and a voltage at a drain of the first PMOS switching element; the PA power supply provides a first PA power supply signal; and the first ET power supply provides a first ET power supply signal, such that the first PA power supply signal is based on the first ET power supply signal.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Manbir Singh Nag, Michael R. Kay, Philippe Gorisse, Nadim Khlat
  • Publication number: 20180309414
    Abstract: Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes ET tracker circuitry configured to provide an ET modulated voltage, which tracks an ET modulated target voltage, to an amplifier circuit(s) for amplifying a radio frequency (RF) signal. The ET amplifier circuit also includes fast switcher circuitry that is activated to provide an alternate current (AC) current to the amplifier circuit(s) when the RF signal includes a higher number of resource blocks (RBs). However, the fast switcher circuitry and its associated control circuitry may incur a processing delay that can cause the fast switcher circuitry to lag behind the ET modulated target voltage. As such, the ET amplifier circuit further includes timing adjustment circuitry to help compensate for the processing delay, thus helping to maintain efficiency of the ET tracker circuitry for improved performance of the ET amplifier circuit.
    Type: Application
    Filed: October 3, 2017
    Publication date: October 25, 2018
    Inventors: Nadim Khlat, Philippe Gorisse, Jeffrey D. Potts, Michael R. Kay
  • Patent number: 10090762
    Abstract: A direct current (DC) voltage converter configured to transition between operation modes is disclosed. A voltage selection circuitry is provided in a DC voltage conversion circuit to control a buck-boost converter that generates a DC output voltage. As opposed to conventional methods of switching the buck-boost converter between a buck mode and a boost mode based on a single switching threshold, the voltage selection circuitry is configured to switch the buck-boost converter between the buck mode and the boost mode based on multiple voltage thresholds. Each of the multiple voltage thresholds defines a respective range for the DC output voltage. By controlling the buck-boost converter based on multiple voltage thresholds, it is possible to provide a smoother transition between the buck mode and the boost mode, thus reducing voltage errors in the DC output voltage and improving reliability of the DC voltage conversion circuit.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: October 2, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Mohammad Ahsanul Adeeb, Philippe Gorisse, Nadim Khlat, Michael R. Kay
  • Patent number: 10079575
    Abstract: A PA power supply, which includes a first ET power supply, power supply control circuitry, a first PMOS switching element, and a second PMOS switching element, is disclosed. During a first operating mode, the power supply control circuitry selects an OFF state of the first PMOS switching element, selects an ON state of the second PMOS switching element, and adjusts a voltage of a first switch control signal to maintain the OFF state of the first PMOS switching element using a voltage at a source of the first PMOS switching element and a voltage at a drain of the first PMOS switching element; the PA power supply provides a first PA power supply signal; and the first ET power supply provides a first ET power supply signal, such that the first PA power supply signal is based on the first ET power supply signal.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: September 18, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Manbir Singh Nag, Michael R. Kay, Philippe Gorisse, Nadim Khlat
  • Publication number: 20170250653
    Abstract: A dual-mode envelope tracking (ET) power management circuit is provided. An ET amplifier(s) in the dual-mode ET power management circuit is capable of supporting normal-power user equipment (NPUE) mode and high-power user equipment (HPUE) mode. In the NPUE mode, the ET amplifier(s) amplifies a radio frequency (RF) signal(s) to an NPUE voltage based on a supply voltage for transmission in an NPUE output power. In the HPUE mode, the ET amplifier(s) amplifies the RF signal(s) to an HPUE voltage higher than the NPUE voltage based on a boosted supply voltage higher than the supply voltage for transmission in an HPUE output power higher than the NPUE output power. The ET amplifier(s) maintains a constant load line between the NPUE mode and the HPUE mode. By maintaining the constant load line, it is possible to maintain efficiency of the ET amplifier(s) in both the NPUE mode and the HPUE mode.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 31, 2017
    Inventors: Nadim Khlat, Andrew F. Folkmann, Michael R. Kay, Philippe Gorisse
  • Publication number: 20170179888
    Abstract: A PA power supply, which includes a first ET power supply, power supply control circuitry, a first PMOS switching element, and a second PMOS switching element, is disclosed. During a first operating mode, the power supply control circuitry selects an OFF state of the first PMOS switching element, selects an ON state of the second PMOS switching element, and adjusts a voltage of a first switch control signal to maintain the OFF state of the first PMOS switching element using a voltage at a source of the first PMOS switching element and a voltage at a drain of the first PMOS switching element; the PA power supply provides a first PA power supply signal; and the first ET power supply provides a first ET power supply signal, such that the first PA power supply signal is based on the first ET power supply signal.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 22, 2017
    Inventors: Manbir Singh Nag, Michael R. Kay, Philippe Gorisse, Nadim Khlat
  • Patent number: 9431974
    Abstract: A switch mode power supply converter and a feedback delay compensation circuit are disclosed. The switch mode power supply converter has a switching voltage output and provides a switching voltage at the switching voltage output, such that a target voltage for a power amplifier supply voltage at a power amplifier supply output is based on the switching voltage. Further, the switching voltage is based on an early indication of a change of the target voltage. The feedback delay compensation circuit provides the early indication of the change of the target voltage.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: August 30, 2016
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay, Philippe Gorisse