Patents by Inventor Philippe Marchand

Philippe Marchand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117538
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding mechanism includes a disc defining a plane and a circumferential edge, a mandrel extending from a center of the disc that is adapted to hold a plurality of filaments extending radially from the mandrel toward the circumferential edge of the disc, a plurality of catch mechanisms positioned circumferentially around the edge of the disc, a plurality of actuators adapted to move the plurality of catch mechanisms in a substantially radial direction relative to the circumferential edge of the disc, and a plurality of filaments extending radially from the mandrel towards circumferential edge of the disc. A middle portion of each filament of the plurality of filaments contacts an end of the mandrel.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventors: James M. Thompson, Brian J. Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J. Kent, Tan Q. Dinh, Hung P. Tran, James A. Milburn
  • Publication number: 20240108467
    Abstract: Delivery apparatus and methods for delivering a medical device into a patient's vasculature are disclosed. In some examples, a method includes inserting, into a patient, a distal end portion of a delivery apparatus including a radially compressed prosthetic valve mounted around a balloon, advancing the distal end through the patient's vasculature, and inflating the balloon to radially expand the prosthetic valve at a native heart valve. The delivery apparatus includes a handle, a first shaft and a second shaft extending from the handle, and a locking mechanism to prevent axial movement of the second shaft relative to first shaft. The second shaft extends coaxially through the first shaft and includes the balloon, the radially compressed prosthetic valve, and one or more radiopaque markers at a distal end portion. The first shaft includes an end piece covering a proximal portion of the balloon during the advancing of the delivery apparatus.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Inventors: Philippe Marchand, David M. Taylor, Robert Milich, David J. Evans, Christopher Chia, Ronaldo C. Cayabyab, Robert Bowes
  • Patent number: 11937838
    Abstract: A device and method for intravascular treatment of an embolism, and particularly a pulmonary embolism, is disclosed herein. One aspect of the present technology, for example, is directed toward a clot treatment device that includes a support member having a plurality of first clot engagement members and second clot engagement members positioned about the circumference of a distal portion of the support member. In an undeployed state, individual first clot engagement members can be linear and have a first length, and individual second clot engagement members can be linear and have a second length that is less than the first length. The clot engagement members can be configured to penetrate clot material along an arcuate path and hold clot material to the clot treatment device.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: March 26, 2024
    Assignee: Inari Medical, Inc.
    Inventors: Brian J. Cox, Paul Lubock, Robert Rosenbluth, Richard Quick, Philippe Marchand
  • Publication number: 20240081829
    Abstract: A system for delivering an implant device to a vascular site in a patient a delivery pusher apparatus, an implant device detachably connected to the delivery pusher apparatus by a tether having a distal end connected to a proximal end of the implant device, wherein the tether is substantially non-tensioned when connecting the implant device to the delivery pusher, and an electrical heating element configured coaxially around at least a portion of the tether, wherein heat generated by the heating element severs the tether at a point near the proximal end of the implant device.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Applicant: MicroVention, Inc.
    Inventors: Claudio Plaza, Scott Hemmelgarn, Eileen Charlton, Todd Hewitt, Philippe Marchand, Daniel Welsh, William R. Patterson, Son Pham
  • Patent number: 11883285
    Abstract: Embodiments of the present disclosure provide an introducer device and methods for introducing a medical device into a patient's vasculature. In one embodiment, a method of using an introducer device including a housing, a hemostatic seal mounted within the housing, and a tube extending into the housing and movable longitudinally relative to the hemostatic seal between a proximal position and a distal position, includes moving the tube to the distal position such that the distal end of the tube extends through the hemostatic seal. The method further includes inserting a distal end portion of the medical device through the tube and into the patient's vasculature without contacting the hemostatic seal.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: January 30, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Philippe Marchand, David M. Taylor, Robert Milich, David J. Evans, Christopher Chia, Ronaldo C. Cayabyab, Robert Bowes
  • Patent number: 11885053
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding mechanism includes a disc defining a plane and a circumferential edge, a mandrel extending from a center of the disc that is adapted to hold a plurality of filaments extending radially from the mandrel toward the circumferential edge of the disc, a plurality of catch mechanisms positioned circumferentially around the edge of the disc, a plurality of actuators adapted to move the plurality of catch mechanisms in a substantially radial direction relative to the circumferential edge of the disc, and a plurality of filaments extending radially from the mandrel towards circumferential edge of the disc. A middle portion of each filament of the plurality of filaments contacts an end of the mandrel.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: January 30, 2024
    Assignee: MICROVENTION, INC.
    Inventors: James M. Thompson, Brian J. Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J. Kent, Tan Q. Dinh, Hung P. Tran, James A. Milburn
  • Patent number: 11849955
    Abstract: A system for delivering an implant device to a vascular site in a patient a delivery pusher apparatus, an implant device detachably connected to the delivery pusher apparatus by a tether having a distal end connected to a proximal end of the implant device, wherein the tether is substantially non-tensioned when connecting the implant device to the delivery pusher, and an electrical heating element configured coaxially around at least a portion of the tether, wherein heat generated by the heating element severs the tether at a point near the proximal end of the implant device.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: December 26, 2023
    Assignee: MicroVention, Inc.
    Inventors: Claudio Plaza, Scott Hemmelgarn, Eileen Charlton, Todd Hewitt, Philippe Marchand, Daniel Welsh, William R. Patterson, Son Pham
  • Publication number: 20230329864
    Abstract: Assemblies and delivery apparatus for delivering a medical device into a patient's vasculature are disclosed. In some examples, an assembly includes a delivery apparatus and a radially compressible and expandable prosthetic heart valve. The delivery apparatus includes a handle, a first shaft and a second shaft extending from the handle, and a locking mechanism to prevent axial movement of the second shaft relative to first shaft. The second shaft extends coaxially through the first shaft and includes, at a distal end portion thereof, a balloon, one or more radiopaque markers, and the prosthetic valve radially compressed over the balloon. A flared end piece extending from the first shaft covers a proximal portion of the balloon during advancing of the delivery apparatus through a patient's vasculature. The first shaft is retractable relative to the second shaft to expose the balloon from the flared end piece.
    Type: Application
    Filed: June 20, 2023
    Publication date: October 19, 2023
    Inventors: Philippe Marchand, David M. Taylor, Robert Milich, David J. Evans, Christopher Chia, Ronaldo C. Cayabyab, Robert Bowes
  • Publication number: 20230256177
    Abstract: In some embodiments, a delivery device includes a device actuator and a cannula portion through which a therapeutic substance is ejected. The cannula portion includes an outer shaft, a needle that is configured to move through the outer shaft, and a plunger that is configured to move through the needle, forming a positive displacement arrangement.
    Type: Application
    Filed: April 26, 2023
    Publication date: August 17, 2023
    Applicant: BLUEROCK THERAPEUTICS LP
    Inventors: MATTHEW GARDNER MAHER, ANGEL LEONARDO GUERRERO PALACIO, PHILIPPE MARCHAND
  • Patent number: 11717405
    Abstract: A method for replacing a stenotic native aortic valve of a patient can include inserting a delivery apparatus into a femoral artery of the patient, the delivery apparatus having a first shaft extending from the handle, a second shaft disposed around the first shaft, a third shaft extending through the second shaft, and a valve cover coupled to the first shaft. The valve cover can be in a first state housing an entirety of a prosthetic heart valve and retaining the prosthetic heart valve in a radially compressed state during the act of inserting. The method can further include advancing the delivery apparatus through the aorta of the patient to position the valve cover and the prosthetic heart valve within the native aortic valve, and moving the valve cover longitudinally from the first state to a second state in which the entirety of the prosthetic heart valve is uncovered.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: August 8, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Philippe Marchand, David M. Taylor, Robert Milich, David J. Evans, Christopher Chia, Ronaldo C. Cayabyab, Robert Bowes
  • Publication number: 20230218310
    Abstract: Disclosed herein are devices for mechanically removing clot and/or other material from implants implanted in the vasculature of a patient, and associated systems and methods. In some embodiments, a system for removing clot material from an implant—such as a stent—includes a clot treatment device configured to be deployed within the stent, a handle, and a first elongate member and a second elongate member coupling the clot treatment device to the handle. The first elongate member couples a first end portion of the clot treatment device to the handle, and the second elongate member couples a second end portion of the clot treatment device to an actuator of the handle. Actuation of the actuator is configured to move the second elongate member relative to the first elongate member to move the first and second end portions toward one another to radially expand the clot treatment device.
    Type: Application
    Filed: January 11, 2023
    Publication date: July 13, 2023
    Inventors: Taylor Scheinblum, Derek Hauschka, Hieu Minh Luong, John Coleman Thress, Philippe Marchand
  • Patent number: 11666710
    Abstract: In some embodiments, a delivery device includes a device actuator and a cannula portion through which a therapeutic substance is ejected. The cannula portion includes an outer shaft, a needle that is configured to move through the outer shaft, and a plunger that is configured to move through the needle, forming a positive displacement arrangement.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: June 6, 2023
    Assignee: BLUEROCK THERAPEUTICS LP
    Inventors: Matthew Gardner Maher, Angel Leonardo Guerrero Palacio, Philippe Marchand
  • Publication number: 20230074408
    Abstract: A method for replacing a stenotic native aortic valve of a patient can include inserting a delivery apparatus into a femoral artery of the patient, the delivery apparatus having a first shaft extending from the handle, a second shaft disposed around the first shaft, a third shaft extending through the second shaft, and a valve cover coupled to the first shaft. The valve cover can be in a first state housing an entirety of a prosthetic heart valve and retaining the prosthetic heart valve in a radially compressed state during the act of inserting. The method can further include advancing the delivery apparatus through the aorta of the patient to position the valve cover and the prosthetic heart valve within the native aortic valve, and moving the valve cover longitudinally from the first state to a second state in which the entirety of the prosthetic heart valve is uncovered.
    Type: Application
    Filed: November 10, 2022
    Publication date: March 9, 2023
    Inventors: Philippe Marchand, David M. Taylor, Robert Milich, David J. Evans, Christopher Chia, Ronaldo C. Cayabyab, Robert Bowes
  • Patent number: 11589986
    Abstract: Embodiments of the present disclosure provide a delivery apparatus for a prosthetic heart valve. Disclosed delivery apparatuses can include a handle, a first shaft extending from the handle, a second shaft disposed around the first shaft, and a valve cover. The valve cover can be coupled to a distal end portion of the first shaft and can be configured to house a prosthetic heart valve in a radially compressed state. The valve cover can have an outer diameter greater than an outer diameter of the second shaft, and the first shaft and valve cover can be movable together in an axial direction relative to the second shaft.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: February 28, 2023
    Assignee: Edwards Lifesciences Corporation
    Inventors: Philippe Marchand, David M. Taylor, Robert Milich, David J. Evans, Christopher Chia, Ronaldo C. Cayabyab, Robert Bowes
  • Publication number: 20230002943
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding mechanism includes a disc defining a plane and a circumferential edge, a mandrel extending from a center of the disc that is adapted to hold a plurality of filaments extending radially from the mandrel toward the circumferential edge of the disc, a plurality of catch mechanisms positioned circumferentially around the edge of the disc, a plurality of actuators adapted to move the plurality of catch mechanisms in a substantially radial direction relative to the circumferential edge of the disc, and a plurality of filaments extending radially from the mandrel towards circumferential edge of the disc. A middle portion of each filament of the plurality of filaments contacts an end of the mandrel.
    Type: Application
    Filed: June 2, 2022
    Publication date: January 5, 2023
    Inventors: James M. Thompson, Brian J. Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J. Kent, Tan Q. Dinh, Hung P. Tran, James A. Milburn
  • Patent number: 11510779
    Abstract: Embodiments of the present disclosure provide an introducer device for introducing a medical device into a patient's vasculature. In one embodiment, the introducer device comprises a housing, a distal sheath adapted to be inserted into a patient's vasculature with the housing positioned outside of the patient's vasculature, a hemostatic seal mounted within the housing, and a tube positioned within the housing and movable longitudinally relative to the hemostatic seal between a proximal position and a distal position. In the proximal position, a distal end of the tube is positioned proximal to the hemostatic seal with the hemostatic seal closed. In the distal position, the distal end of the tube extends through the hemostatic seal and permits the medical device to be inserted through the housing and into the patient's vasculature without contacting the hemostatic seal.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: November 29, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Philippe Marchand, David M. Taylor, Robert Milich, David J. Evans, Christopher Chia, Ronaldo C. Cayabyab, Robert Bowes
  • Patent number: 11382743
    Abstract: Embodiments of the present disclosure provide a delivery apparatus for a prosthetic heart valve. Disclosed steerable catheters can include a handle, a steerable shaft extending from the handle, and a pull wire. The shaft can include a main lumen, an inner polymeric layer surrounding the main lumen, a braided layer surrounding the inner polymeric layer, and an outer polymeric layer surrounding the braided layer, the outer polymeric layer defining a pull wire lumen. The pull wire can extend from the handle and through the pull wire lumen and can have a distal end portion coupled to a distal end portion of the shaft.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: July 12, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Philippe Marchand, David M. Taylor, Robert Milich, David J. Evans, Christopher Chia, Ronaldo C. Cayabyab, Robert Bowes
  • Patent number: 11352724
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding mechanism includes an array of filament engagement elements, a mandrel extending from the center of the circular array, a plurality of actuators disposed operably about the array, and a rotating mechanism adapted to rotate one or more filaments. The plurality of filaments are loaded onto the mandrel by looping a middle portion of each filament of the plurality of filaments over an end of the mandrel and extend radially toward and contact the circumferential edge of the circular array of filament engagement elements. The plurality of actuators are operated to engage a first subset of the plurality of filaments and move the engaged filaments in a generally radial direction to a position beyond the circumferential edge of the array. The rotating mechanism is operated to move the engaged filaments about the mandrel axis.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: June 7, 2022
    Assignee: SEQUENT MEDICAL, INC.
    Inventors: James M. Thompson, Brian J. Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J. Kent, Tan Q. Dinh, Hung P. Tran, James A. Millburn
  • Publication number: 20220026381
    Abstract: This invention concerns a method for analysing the ageing stability of a bituminous binder, in particular by reference to its susceptibility to oxidation, by analysing a sample of the bituminous binder by means of electron spin resonance and measuring the integral of the signal of the carbon-centred stable radicals; accelerated ageing of the bituminous binder, comprising: i) heating the bituminous binder, followed by ii) heating the bituminous binder resulting from step i) under pressure; analysing a sample of the aged bituminous binder obtained from step b) by means of electron spin resonance and measuring the integral of the signal of the carbon-centred stable radicals; and comparing the integral of the signal of the carbon-centred stable radicals of the bituminous binder obtained from the first step and that obtained from the previous step.
    Type: Application
    Filed: November 26, 2019
    Publication date: January 27, 2022
    Applicants: TOTAL MARKETING SERVICES, Centre national de la recherche scientifique, Université de Lille
    Inventors: Manuel MERCE, Simon PONDAVEN, Philippe MARCHAND, Hervé VEZIN, Karima BEN TAYEB MEZIANE
  • Publication number: 20220022898
    Abstract: A device and method for intravascular treatment of an embolism, and particularly a pulmonary embolism, is disclosed herein. One aspect of the present technology, for example, is directed toward a clot treatment device that includes a support member having a plurality of first clot engagement members and second clot engagement members positioned about the circumference of a distal portion of the support member. In an undeployed state, individual first clot engagement members can be linear and have a first length, and individual second clot engagement members can be linear and have a second length that is less than the first length. The clot engagement members can be configured to penetrate clot material along an arcuate path and hold clot material to the clot treatment device.
    Type: Application
    Filed: June 24, 2021
    Publication date: January 27, 2022
    Inventors: Brian J. Cox, Paul Lubock, Robert Rosenbluth, Richard Quick, Philippe Marchand