Patents by Inventor Phillip Walsh

Phillip Walsh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10641749
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: May 5, 2020
    Assignee: VUV Analytics, Inc.
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Publication number: 20190293614
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Application
    Filed: May 16, 2019
    Publication date: September 26, 2019
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Patent number: 10338040
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: July 2, 2019
    Assignee: VUV Analytics, Inc.
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Patent number: 10302607
    Abstract: Analysis of chemically samples using gas chromatography (GC) separation with vacuum ultra-violet spectroscopy detection is described. One technique focuses on assigning a specific analysis methodology to each constituent in a sample. Constituents can elute from the GC by themselves or with other constituents, in which case a deconvolution is done using VUV spectroscopic data. In an exemplary embodiment, each constituent may be specifically included in an analysis method during a setup procedure, after which the same series of analyses are done on subsequent sample runs. The second approach essentially integrates an entire chromatogram by first reducing it into a series of analysis windows, or time slices, that are analyzed automatically. The analysis at each time slice determines the molecular constituents that are present as well as their contributions to the total response. Either approach can be used to quantify specific analytes or to do bulk classification.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: May 28, 2019
    Assignee: VUV Analytics, Inc.
    Inventors: Phillip Walsh, Dale A. Harrison, Sean H. Jameson, Jr.
  • Patent number: 9976996
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: May 22, 2018
    Assignee: VUV Analytics, Inc.
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Patent number: 9891197
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: February 13, 2018
    Assignee: VUV Analytics, Inc.
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Patent number: 9696286
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 4, 2017
    Assignee: VUV Analytics, Inc.
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Publication number: 20170030874
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Application
    Filed: October 17, 2016
    Publication date: February 2, 2017
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Publication number: 20170030828
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Application
    Filed: October 17, 2016
    Publication date: February 2, 2017
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Publication number: 20160377531
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Application
    Filed: September 8, 2016
    Publication date: December 29, 2016
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh, JR.
  • Publication number: 20160377581
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Application
    Filed: September 8, 2016
    Publication date: December 29, 2016
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh, JR.
  • Publication number: 20160363569
    Abstract: Analysis of chemically samples using gas chromatography (GC) separation with vacuum ultra-violet spectroscopy detection is described. One technique focuses on assigning a specific analysis methodology to each constituent in a sample. Constituents can elute from the GC by themselves or with other constituents, in which case a deconvolution is done using VUV spectroscopic data. In an exemplary embodiment, each constituent may be specifically included in an analysis method during a setup procedure, after which the same series of analyses are done on subsequent sample runs. The second approach essentially integrates an entire chromatogram by first reducing it into a series of analysis windows, or time slices, that are analyzed automatically. The analysis at each time slice determines the molecular constituents that are present as well as their contributions to the total response. Either approach can be used to quantify specific analytes or to do bulk classification.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 15, 2016
    Inventors: Phillip Walsh, Dale A. Harrison, Sean H. Jameson, JR.
  • Patent number: 9465015
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: October 11, 2016
    Assignee: VUV Analytics, Inc.
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Patent number: 9310292
    Abstract: A highly efficient vacuum ultraviolet circular dichroism spectrometer is provided; the spectrometer suitable for laboratory use or for integration into a beam line at a synchrotron radiation facility. In one embodiment, a spectroscopic circular dichroism instrument is provided; the instrument configured so as to enable circular dichroism data to be simultaneously obtained for multiple wavelengths of light. The instrument may be further configured to operate in at least a portion of the vacuum ultraviolet wavelength region.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: April 12, 2016
    Assignee: VUV Analytics, Inc.
    Inventors: Phillip Walsh, Anthony T. Hayes, Dale A. Harrison
  • Patent number: 9116158
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 25, 2015
    Assignee: VUV Analytics, Inc.
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Publication number: 20150059440
    Abstract: An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Dale A. Harrison, Anthony T. Hayes, Phillip Walsh
  • Patent number: 8867041
    Abstract: An optical metrology apparatus for measuring nanoimprint structures using Vacuum Ultra-Violet (VUV) light is described. Focusing optics focus light onto the sample and collect the light reflected from the sample so as to record an optical response from nanoimprint structures on the sample, wherein the nanoimprint structures have an orientation that varies over a surface of the sample. A sample stage is configured to support the sample. At least one computer is connected to the metrology instrument and the sample stage and is configured to run a computer program which causes the sample stage to rotate the sample so as to present multiple different locations on the sample to the optical metrology instrument such that the orientation of the nanoimprint structures at the multiple different locations remains fixed with respect to a plane of the focusing optics of the metrology instrument in order to eliminate polarization effects.
    Type: Grant
    Filed: January 15, 2012
    Date of Patent: October 21, 2014
    Assignee: Jordan Valley Semiconductor Ltd
    Inventors: Phillip Walsh, Jeffrey B. Hurst, Dale A. Harrison
  • Publication number: 20140264053
    Abstract: A highly efficient vacuum ultraviolet circular dichroism spectrometer is provided; the spectrometer suitable for laboratory use or for integration into a beam line at a synchrotron radiation facility. In one embodiment, a spectroscopic circular dichroism instrument is provided; the instrument configured so as to enable circular dichroism data to be simultaneously obtained for multiple wavelengths of light. The instrument may be further configured to operate in at least a portion of the vacuum ultraviolet wavelength region.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Inventors: Phillip Walsh, Anthony T. Hayes, Dale A. Harrison
  • Patent number: 8773662
    Abstract: A highly efficient vacuum ultraviolet circular dichroism spectrometer is provided; the spectrometer suitable for laboratory use or for integration into a beam line at a synchrotron radiation facility. In one embodiment, a spectroscopic circular dichroism instrument is provided; the instrument configured so as to enable circular dichroism data to be simultaneously obtained for multiple wavelengths of light. The instrument may be further configured to operate in at least a portion of the vacuum ultraviolet wavelength region.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: July 8, 2014
    Assignee: VUV Analytics, Inc.
    Inventors: Phillip Walsh, Anthony T. Hayes, Dale A. Harrison
  • Patent number: 8564780
    Abstract: A method and apparatus is disclosed for using below deep ultra-violet (DUV) wavelength reflectometry for measuring properties of diffracting and/or scattering structures on semiconductor work-pieces is disclosed. The system can use polarized light in any incidence configuration, but one technique disclosed herein advantageously uses un-polarized light in a normal incidence configuration. The system thus provides enhanced optical measurement capabilities using below deep ultra-violet (DUV) radiation, while maintaining a small optical module that is easily integrated into other process tools. A further refinement utilizes an r-? stage to further reduce the footprint.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: October 22, 2013
    Assignee: Jordan Valley Semiconductors Ltd.
    Inventors: Phillip Walsh, Dale Harrison