Patents by Inventor Pierre C. Fazan

Pierre C. Fazan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5940692
    Abstract: A method of reducing diffusion of impurity dopants within a semiconductive material beneath a field effect transistor gate in a process of forming a field effect transistor includes, a) providing a bulk monocrystalline silicon substrate; b) providing a gate oxide layer over the silicon substrate; c) providing a patterned gate over the gate oxide layer, the gate having sidewalls; d) providing a pair of diffusion regions within the silicon substrate adjacent the gate sidewalls; and e) subjecting the wafer to an oxidizing atmosphere at a pressure of from about 5 atmospheres to about 30 atmospheres and at a temperature of from about 650.degree. C. to about 750.degree. C. for a period of time from about 5 minutes to about 30 minutes effective, i) to oxidize the gate sidewalls, ii) to oxidize the semiconductive material substrate adjacent the gate sidewalls, and iii) to thicken the gate oxide layer adjacent the gate sidewalls.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: August 17, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Nanseng Jeng, Viju K. Mathews, Pierre C. Fazan
  • Patent number: 5933754
    Abstract: A semiconductor processing method of forming an electrically conductive contact plug relative to a wafer includes, a) providing a substrate to which electrical connection is to be made; b) depositing a layer of first material atop the substrate to a selected thickness; c) pattern masking the first material layer for formation of a desired contact opening therethrough; d) etching through the first material layer to form a contact opening therethrough for making electrical connection with the substrate, the contact opening having an outermost region; e) after etching to form the contact opening, removing the masking from the first material layer; f) after removing the masking from the first material layer, facet sputter etching into the first material layer relative to the contact opening to provide outwardly angled sidewalls which effectively widen the contact opening outermost region, the outwardly angled sidewalls having an inner base where they join with the original contact opening; g) depositing a layer o
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: August 3, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Viju K. Mathews, Nanseng Jeng, Pierre C. Fazan
  • Patent number: 5923078
    Abstract: A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: July 13, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Kirk Prall, Pierre C. Fazan, Aftab Ahmad, Howard E. Rhodes, Werner Juengling, Pai-Hung Pan, Tyler Lowrey
  • Patent number: 5902128
    Abstract: A method of forming isolation structures in semiconductor substrates comprising exposing a region of the semiconductor simultaneously to a transforming agent and to a viscosity reducing agent so that the transforming agent transforms a portion of the substrate into an isolation structure and the viscosity reducing agent reduces the viscosity of the isolation structure during formation. In one embodiment, a silicon substrate is exposed to oxygen in the presence of fluorine so that a silicon oxide isolation region is formed. The fluorine reduces the viscosity of the silicon oxide isolation region during formation which results in less lateral, bird's beak encroachment under adjacent masking stacks and also results in lower internal stress in the isolation region during formation. The lower internal stress and the lessened lateral encroachment result in thicker and improved isolation regions.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: May 11, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Viju K. Mathews, Nanseng Jeng, Pierre C. Fazan
  • Patent number: 5891788
    Abstract: A technique for producing an isolation structure in a semiconductor substrate wherein lateral encroachment, i.e., bird's beak formation, under a masking stack is limited. The disclosed embodiment comprises growing a layer of pad oxide on a silicon substrate and then depositing a layer of silicon nitride on the layer of pad oxide. The nitride is then patterned and etched to define a masking stack and a region of the substrate wherein the isolation structure is to be formed. The pad oxide is then removed from the region and is also partially removed under the nitride stack, thus forming a cavity. A re-ox oxide layer is then grown over the substrate, followed by the growth of a spacer layer. The spacer layer is comprised of either polysilicon or silicon nitride. Subsequently, the isolation structure is grown using high pressure oxidation techniques, which results in the oxidation structure growing sufficiently fast that the spacer layer in the cavity is not oxidized.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: April 6, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Pierre C. Fazan, Viju K. Mathews, Nanseng Jeng
  • Patent number: 5891768
    Abstract: A capacitor construction includes, a) first and second electrically conductive capacitor plates separated by an intervening capacitor dielectric layer, the first capacitor plate comprising first and second container members, the second container member being received inside of the first container member, the first and second container members comprising a respective ring portion and a respective base portion; and b) a pedestal disk positioned elevationally intermediate the first container member base and the second container member base to space and support the second container member relative to the first container member. The structure is preferably produced by using a series of alternating first and second layers of semiconductive material provided over a molding layer within a container contact opening therein. One of the first and second layers has an average conductivity enhancing dopant concentration of greater than about 5.times.10.sup.19 ions/cm.sup.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: April 6, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Thomas Figura, Pierre C. Fazan
  • Patent number: 5889300
    Abstract: A capacitor construction includes, a) first and second electrically conductive capacitor plates separated by an intervening capacitor dielectric layer, the first capacitor plate comprising first and second container members, the second container member being received inside of the first container member, the first and second container members comprising a respective ring portion and a respective base portion; and b) a pedestal disk positioned elevationally intermediate the first container member base and the second container member base to space and support the second container member relative to the first container member. The structure is preferably produced by using a series of alternating first and second layers of semiconductive material provided over a molding layer within a container contact opening therein. One of the first and second layers has an average conductivity enhancing dopant concentration of greater than about 5.times.10.sup.19 ions/cm.sup.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: March 30, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Thomas Figura, Pierre C. Fazan
  • Patent number: 5869367
    Abstract: A method of forming a capacitor includes, a) providing a series of alternating first and second layers of semiconductive material over a node location, a first of the first and second layers having an average conductivity enhancing dopant concentration of greater than about 5.times.10.sup.19 ions/cm.sup.3, a second of the first and second layers having an average conductivity enhancing dopant concentration from 0 ions/cm.sup.3 to about 5.times.10.sup.19 ions/cm.sup.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: February 9, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Pierre C. Fazan, Brent Keeth
  • Patent number: 5868870
    Abstract: A trench for isolating active devices on a semiconductor substrate, formed by creating a trench which has a peripheral edge, and disposing an isolating material in the trench. The isolating material extends over the peripheral edge of the trench, thereby covering at least a portion of the substrate surrounding the trench, and substantially limiting leakage of the active devices disposed on the substrate.
    Type: Grant
    Filed: February 11, 1997
    Date of Patent: February 9, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Pierre C. Fazan, Martin C. Roberts, Gurtej S. Sandhu
  • Patent number: 5849624
    Abstract: Disclosed is an improved stacked capacitor with rounded corners for increasing capacitor breakdown voltage, and a method of constructing the same. The preferred method comprises rounding corners of a container-shaped bottom electrode. In particular, sharp corners of a pre-fabricated conductive silicon container are exposed to an ammonium hydroxide/peroxide mixture. The slow etching effect of the clean rounds angled surfaces thereby minimizing the high field effects usually associated with corners and other angled surfaces. Reducing such field effects by reducing or eliminating sharp corners helps prevent breakdown of the capacitor structure dielectric. Where the conductive container includes a rough layer, such as hemispherical grained silicon, the invention provides the additional advantage of separating individual hemispherical grains, thus allowing later deposition of a uniformly thick dielectric layer.
    Type: Grant
    Filed: July 30, 1996
    Date of Patent: December 15, 1998
    Assignee: Mircon Technology, Inc.
    Inventors: Pierre C. Fazan, Thomas A. Figura, Klaus F. Schuegraf
  • Patent number: 5837378
    Abstract: A process for reducing stress during processing of semiconductor wafers comprising the steps of depositing a masking stack on a top and a bottom surface of the wafer and then removing at least a portion of the masking stack on the bottom surface prior to forming isolation regions on the top surface of the semiconductor wafer. In one embodiment, silicon nitride is formed on the top and the bottom surface of a silicon wafer. The silicon nitride is then patterned and etched on the top surface of the wafer to expose regions of the underlying silicon for field oxide formation. Prior to the field oxidation formation on the top side of the wafer, the silicon nitride layer on the bottom side of the wafer is removed so that a layer of silicon dioxide is formed on the bottom surface of the wafer during field oxidation formation.
    Type: Grant
    Filed: September 12, 1995
    Date of Patent: November 17, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Viju K. Mathews, Nanseng Jeng, Pierre C. Fazan, Thomas A. Figura
  • Patent number: 5830793
    Abstract: Polysilicon or amorphous silicon electrodes are selectively texturized with respect to neighboring dielectric surfaces. Selectivity of texturizing is partially accomplished by exploiting differences in seed incubation time on silicon as compared to neighboring surfaces. The texturizing process is made substantially completely selective by a texturizing post-etch, which selectively removes parasitic deposits from surfaces adjacent to the silicon electrodes. Selectively texturized electrodes represent a significant improvement in DRAM process integration.
    Type: Grant
    Filed: December 28, 1995
    Date of Patent: November 3, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Klaus F. Schuegraf, Pierre C. Fazan, Thomas A. Figura
  • Patent number: 5821150
    Abstract: A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars.
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: October 13, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Kirk Prall, Pierre C. Fazan, Aftab Ahmad, Howard E. Rhodes, Werner Juengling, Pai-Hung Pan, Tyler Lowrey
  • Patent number: 5814852
    Abstract: A method of forming a dielectric layer includes, a) chemical vapor depositing a dielectric layer of Ta.sub.2 O.sub.5 atop a substrate; and b) providing a predominately amorphous diffusion barrier layer over the Ta.sub.2 O.sub.5 dielectric layer. A method of forming a capacitor includes, a) providing a node to which electrical connection to a capacitor is to be made; b) providing a first electrically conductive capacitor plate over the node; c) chemical vapor depositing a capacitor dielectric layer of Ta.sub.2 O.sub.5 over the first electrically conductive capacitor plate; and d) providing a predominately amorphous diffusion barrier layer over the Ta.sub.2 O.sub.5 dielectric layer. A capacitor construction is also disclosed. The preferred amorphous diffusion barrier layer is electrically conductive and constitutes a metal organic chemical vapor deposited TiC.sub.x N.sub.y O.sub.z, where "x" is in the range of from 0.01 to 0.5, and "y" is in the range of from 0.99 to 0.5, and "z" is in the range of from 0 to 0.
    Type: Grant
    Filed: June 11, 1996
    Date of Patent: September 29, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Pierre C. Fazan
  • Patent number: 5801104
    Abstract: Uniformity of thin deposited layers on textured surfaces is enhanced by reducing the total surface area available to film deposition. The backside surface area of a semiconductor wafer is reduced prior to film deposition, thereby reducing the available surface to deposition when a deposition process is supply-limited. Reducing the backside surface area suppresses nonuniformities in thin film deposition when the deposition process is substantially supply-limited. The present invention is advantageous for improving uniformity of nitride capacitor dielectric layers deposited on textured electrodes.
    Type: Grant
    Filed: October 24, 1995
    Date of Patent: September 1, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Klaus F. Schuegraf, Pierre C. Fazan
  • Patent number: 5798296
    Abstract: A method of fabricating a gate having a barrier layer of titanium silicide is comprised of the steps of forming a layer of gate oxide. The gate oxide may be formed using a standard LOCOS process. A layer of doped polysilicon is deposited over the layer of gate oxide. A layer of titanium silicide is formed in a predetermined relationship with respect the layer of doped polysilicon, i.e., it may be deposited on top of the polysilicon or formed in a top surface of the polysilicon layer. A layer of tungsten silicide is deposited on top of the layer of titanium silicide. The layers of gate oxide, doped polysilicon, titanium silicide, and tungsten silicide are etched to form the gate. A gate thus fabricated is also disclosed.
    Type: Grant
    Filed: May 17, 1996
    Date of Patent: August 25, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Pierre C. Fazan, Hiang C. Chan
  • Patent number: 5793076
    Abstract: A capacitor for high density DRAM applications comprises a high-.epsilon. capacitor dielectric such as BST or PZT in an arrangement which obviates the need for barrier layers during fabrication. The fabrication process allows for electrode placement by simple sputter deposition and further provides for the possibility of capacitor spacing below that of conventional lithographic techniques.
    Type: Grant
    Filed: September 21, 1995
    Date of Patent: August 11, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Pierre C. Fazan, Paul Schuele
  • Patent number: 5780920
    Abstract: A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: July 14, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Kirk Prall, Pierre C. Fazan, Aftab Ahmad, Howard E. Rhodes, Werner Juengling, Pai-Hung Pan, Tyler Lowrey
  • Patent number: 5770500
    Abstract: Disclosed is a method of fabricating hemispherical grained (HSG) silicon layers. A surface seeding method is disclosed, wherein an amorphous silicon layer is doped with germanium. The silicon may be doped with germanium during deposition, or a previously formed silicon layer may be implanted with the germanium. The layer may also be in situ conductively doped. The Ge-doped amorphous silicon is then subjected to a vacuum anneal in which surface migration of silicon atoms causes a redistribution in the layer, and hemispherical grains or bumps result. A seeding source gas may flow during the anneal to aid in nucleation. The method permits HSG silicon formation at lower temperature and shorter duration anneals than prior art methods. Greater silicon mobility in the presence of germanium dopants also enables the growth of larger grains, thus enhancing surface area. At the same time, the germanium provides conductivity for memory cell charge storage.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: June 23, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Shubneesh Batra, Pierre C. Fazan, John K. Zahurak
  • Patent number: 5753543
    Abstract: A method of forming a bottom gated TFT includes, a) providing a transistor gate relative to a substrate which projects outward thereof; b) providing a dielectric layer over the gate; c) providing a TFT layer of semiconductive material over the dielectric layer; the thin film transistor layer comprising a source area, a channel area, a drain area, and a drain offset area; d) providing a masking layer over the TFT layer; e) anisotropically etching the masking layer to define a masking sidewall spacer laterally adjacent the transistor gate over the drain offset area and leave the channel area outwardly exposed; f) with the masking sidewall spacer in place, implanting a conductivity enhancing impurity of a first type into the thin film channel area to provide a thin film channel region; and g) masking the channel area and the drain offset area while implanting conductivity enhancing impurity of a second type into the thin film source and drain areas to define thin film source and channel regions.
    Type: Grant
    Filed: March 25, 1996
    Date of Patent: May 19, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Shubneesh Batra, Pierre C. Fazan