Patents by Inventor Pierre D. Mourad

Pierre D. Mourad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190282201
    Abstract: A stylet includes a handle assembly with an indicator display and a stiff wire assembly extending distally from the handle assembly having a non-imaging ultrasonic device on a distal end. The stylet includes a circuit assembly having one or more of a pulser, a transmit/receive chip, a bandpass filter, a differential amplifier, an ADC, and an MCU, operable to control the operation of the ultrasonic device and to receive and analyze data from the ultrasonic device to facilitate implantation of a device such as a catheter.
    Type: Application
    Filed: October 17, 2018
    Publication date: September 19, 2019
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Pierre D. Mourad, Samuel R. Browd, Brian MacConaghy, Revathi Murthy, Nathaniel Coulson
  • Publication number: 20190022426
    Abstract: An example method includes applying ultrasound waves to a particular portion of a nervous tissue. The ultrasound waves are pulsed at a pulse repetition frequency. The method further includes detecting an electrical signal originating from at least the particular portion of the nervous tissue. The method further includes extracting a component of the electrical signal that oscillates at an oscillation frequency that is equal to (a) the pulse repetition frequency, (b) a subharmonic frequency of the pulse repetition frequency, or (c) a harmonic frequency of the pulse repetition frequency. The method further includes processing the extracted component to obtain one or more components that oscillate at respective frequencies that are unequal to the pulse repetition frequency. Systems and computer readable media related to the example method are disclosed herein as well.
    Type: Application
    Filed: February 10, 2017
    Publication date: January 24, 2019
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Pierre D. Mourad, Felix Darvas
  • Patent number: 10123766
    Abstract: A stylet (100) includes a handle assembly (102) with an indicator display (112) and a stiff wire assembly (120) extending distally from the handle assembly (102) having a non-imaging ultrasonic device on a distal end. The stylet includes a circuit assembly having one or more of a pulser (120), a transmit/receive chip (132), a bandpass filter (134), a differential amplifier (136), an ADC (138), and an MCU (140), operable to control the operation of the ultrasonic device and to receive and analyze data from the ultrasonic device to facilitate implantation of a device such as a catheter.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: November 13, 2018
    Assignee: University of Washington Through its Center for Commercialization
    Inventors: Pierre D. Mourad, Samuel R. Browd, Brian MacConaghy, Revathi Murthy, Nathaniel Coulson
  • Publication number: 20180289736
    Abstract: Methods and compositions for treating traumatic brain injury. The methods and compositions utilize a multi-functional oxygen reactive polymer (ORP) that includes repeating units that include a reactive oxygen species (ROS) scavenging group and a polyalkylene oxide group. For theranostic applications, the oxygen reactive polymer further includes a diagnostic group.
    Type: Application
    Filed: October 6, 2016
    Publication date: October 11, 2018
    Applicant: University of Washington
    Inventors: Patrick S. Stayton, Menko R. Ypma, Peter A. Chiarelli, Joshua Sang Hun Park, Richard G. Ellenbogen, Julia Mengyun Xu, Pierre D. Mourad, Donghoon Lee, Anthony Convertine, Forrest M. Kievit
  • Publication number: 20170049413
    Abstract: A medical device for providing guidance to administered cardiopulmonary resuscitation during cardiac arrest in a subject comprising a measuring probe to measure a hemodynamic property of blood flowing through a blood vessel of the subject, an interface element with reference indicia to guide the measuring probe to major blood vessels of the subject experiencing cardiac arrest, and a blood flow monitoring device comprising a data module to collect measured hemodynamic properties of the subject and a guidance module configured to display resuscitation guidance information for manipulating at least one hemodynamic property of the blood.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 23, 2017
    Inventors: Graham Nichol, Adeyinka Adedipe, Pierre D. Mourad
  • Patent number: 9295402
    Abstract: The present invention provides methods, software, and systems for assessing a burn injury.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: March 29, 2016
    Assignee: University of Washington Through its Center for Commercialization
    Inventors: Mohammad Hassan Arbab, Pierre D. Mourad, Antao Chen, Trevor C. Dickey, Matthew D. Klein, Dale P. Winebrenner
  • Publication number: 20160058305
    Abstract: A reperfusion injury detection device comprising a measuring probe with a plurality of sensors collecting a hemodynamic property of a blood vessel of a subject coupled to a pneumatic cuff for applying transient occlusion to the blood vessel being measured and a reperfusion injury analysis device made up from a data module that measures the collected hemodynamic property and determines metric of the measured property over time, and display the measured property on an output module.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 3, 2016
    Inventors: Graham Nichol, Adeyinka Adedipe, Pierre D. Mourad
  • Publication number: 20150251141
    Abstract: Described herein are apparatuses and methods for preventing or otherwise reducing scaling and fouling of a membrane using ultrasonic vibrations. One example method involves: (1) directing a solution to a membrane of a membrane assembly, where the membrane passes a solvent of the solution through the membrane at a first rate, and where the membrane prevents at least some of a solute of the solution from passing through the membrane; and (2) causing a piezoelectric material that is physically coupled to the membrane to produce ultrasonic waves directed at the membrane, where the ultrasonic waves induce oscillations in at least a portion of the membrane and thereby the solvent of the solution passes through the membrane at a second rate that is greater than the first rate.
    Type: Application
    Filed: November 5, 2013
    Publication date: September 10, 2015
    Applicant: University of Washington Through Its Center for Commercialization
    Inventors: Pierre D. Mourad, Jaffer Alali, Brian Macconaghy
  • Publication number: 20140323857
    Abstract: A stylet (100) includes a handle assembly (102) with an indicator display (112) and a stiff wire assembly (120) extending distally from the handle assembly (102) having a non-imaging ultrasonic device on a distal end. The stylet includes a circuit assembly having one or more of a pulser (120), a transmit/receive chip (132), a bandpass filter (134), a differential amplifier (136), an ADC (138), and an MCU (140), operable to control the operation of the ultrasonic device and to receive and analyze data from the ultrasonic device to facilitate implantation of a device such as a catheter.
    Type: Application
    Filed: December 10, 2012
    Publication date: October 30, 2014
    Applicant: University of Washington Through its Center for Commercialization
    Inventors: Pierre D. Mourad, Samuel R. Browd, Brian MacConaghy, Revathi Murthy, Nathaniel Coulson
  • Patent number: 8846106
    Abstract: Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes, coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 30, 2014
    Assignees: University of Washington, University of Massachusetts
    Inventors: Allan S. Hoffman, Patrick Stayton, Oliver W. Press, Niren Murthy, Chantal Lackey Reed, Lawrence A. Crum, Pierre D. Mourad, Tyrone M. Porter, David Tirrell
  • Publication number: 20140219950
    Abstract: Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes, coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 7, 2014
    Applicants: UNIVERSITY OF MASSACHUSETTS, UNIVERSITY OF WASHINGTON
    Inventors: Allan S. Hoffman, Patrick Stayton, Oliver W. Press, Niren Murthy, Chantal Lackey Reed, Lawrence A. Crum, Pierre D. Mourad, Tyrone M. Porter, David Tirrell
  • Publication number: 20120108918
    Abstract: Methods and systems for identifying and spatially localizing tissues having certain physiological properties or producing certain biological responses, such as the sensation of pain, in response to the application of intense focused ultrasound (acoustic probing or palpation) are provided. In some embodiments, targeted acoustic probing is employed to identify the scope and severity of chronically painful sensitized tissue areas, and of chronic pain disorders. In other applications, targeted acoustic probing is used to localize nerves and other sensitized tissues for guidance of needles and other delivery devices, and for delivery of anesthetic, analgesic or therapeutic compositions.
    Type: Application
    Filed: June 15, 2011
    Publication date: May 3, 2012
    Applicant: PHYSIOSONICS, INC.
    Inventors: Jeffrey G. Jarvik, Pierre D. Mourad, Michel Kliot, Robert C.A. Frederickson, Abbi M. McClintic, Trevor C. Dickey, Michael Gofeld
  • Publication number: 20110288238
    Abstract: Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes, coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof.
    Type: Application
    Filed: July 14, 2011
    Publication date: November 24, 2011
    Applicants: UNIVERSITY OF MASSACHUSETTS, UNIVERSITY OF WASHINGTON
    Inventors: Allan S. Hoffman, Patrick Stayton, Oliver W. Press, Niren Murthy, Chantal Lackey Reed, Lawrence A. Crum, Pierre D. Mourad, Tyrone M. Porter, David Tirrell
  • Patent number: 8003129
    Abstract: Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes, coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: August 23, 2011
    Assignees: University of Washington, Univeristy of Massachusetts
    Inventors: Allan S. Hoffman, Patrick Stayton, Oliver W. Press, Niren Murthy, Chantal Lackey Reed, Lawrence A. Crum, Pierre D. Mourad, Tyrone M. Porter, David Tirrell
  • Publication number: 20110159461
    Abstract: A power toothbrush (10) is disclosed having a handle (15), battery (12), ultrasonic drive circuit (14), motor (16), control unit (18), and toothbrush head (20). The toothbrush head includes bristles (26) and a waveguide (24) that is operatively connected to an ultrasonic transducer (22). The waveguide facilitates the transmission of acoustic energy into the dental fluid to achieve improved cleaning and stain removal and improved cleaning in interproximal and subgingival regions. In one embodiment an ultrasound transducer module (30) includes a plurality of piezoelectric elements (32, 34) that may be mechanically connected in series, and electrically connected in parallel. One or more contacts (36) connect the elements, and a waveguide structure (50). An impedance matching layer (38) may be provided between the waveguide and the ultrasonic transducer module. The waveguide may be formed from a relatively soft material, for example, a polymer having a hardness between 10 and 65 Shore A.
    Type: Application
    Filed: March 14, 2011
    Publication date: June 30, 2011
    Applicants: WASHINGTON, UNIVERSITY OF, ULTREO, INC.
    Inventors: Pierre D. Mourad, James Christopher McInnes, George A. Barrett, David A. Ballard, Gerald K. Brewer, Frederick Jay Bennett
  • Publication number: 20100279248
    Abstract: A hand-held intra-oral dental device and method are described for the detection of pre-caries lesions and the prediction of evolution and prognosis of same. The present invention has as its foundation a low-cost tool for predicting the likelihood of the development of Early Childhood Caries (ECC), in contrast to other techniques and associated devices, where their focus is to identify individual pre-caries lesions. This method focuses on the detection of caries precursors or of their patterns and the relationship of those precursors and patterns to the likelihood of subsequent dental disease. The implications for the establishment for early preventive treatment are profound, namely the earliest implementation of preventative therapy for our approach relative to that of the other approaches.
    Type: Application
    Filed: March 5, 2010
    Publication date: November 4, 2010
    Inventors: Pierre D. Mourad, Joel Berg, Paul Ray Illian
  • Patent number: 7815574
    Abstract: Systems and methods for noninvasive assessment of cardiac tissue properties and cardiac parameters using ultrasound techniques are disclosed. Determinations of myocardial tissue stiffness, tension, strain, strain rate, and the like, may be used to assess myocardial contractility, myocardial ischemia and infarction, ventricular filling and atrial pressures, and diastolic functions. Non-invasive systems in which acoustic techniques, such as ultrasound, are employed to acquire data relating to intrinsic tissue displacements are disclosed. Non-invasive systems in which ultrasound techniques are used to acoustically stimulate or palpate target cardiac tissue, or induce a response at a cardiac tissue site that relates to cardiac tissue properties and/or cardiac parameters are also disclosed.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 19, 2010
    Assignees: PhysioSonics, Inc., University of Washington
    Inventors: Pierre D. Mourad, Michel Kliot, Rex Patterson, Alec Rooke
  • Publication number: 20100087728
    Abstract: Methods and systems for identifying and spatially localizing tissues having certain physiological properties or producing certain biological responses, such as the sensation of pain, in response to the application of intense focused ultrasound (acoustic probing or palpation) are provided. In some embodiments, targeted acoustic probing may be guided or visualized using imaging techniques such as ultrasound imaging or other types of non-invasive imaging techniques.
    Type: Application
    Filed: September 18, 2009
    Publication date: April 8, 2010
    Applicants: PHYSIOSONICS, INC., UNIVERSITY OF WASHINGTON
    Inventors: Jeffrey G. JARVIK, Pierre D. MOURAD, Michel KLIOT, Robert C. A. FREDERICKSON
  • Publication number: 20100081893
    Abstract: Methods and systems for identifying and spatially localizing tissues having certain physiological properties or producing certain biological responses, such as the sensation of pain, in response to the application of intense focused ultrasound (acoustic probing or palpation) are provided. In some embodiments, targeted acoustic probing may be guided or visualized using imaging techniques such as ultrasound imaging or other types of non-invasive imaging techniques.
    Type: Application
    Filed: September 18, 2009
    Publication date: April 1, 2010
    Applicants: PHYSIOSONICS, INC., UNIVERSITY OF WASHINGTON
    Inventors: Jeffrey G. JARVIK, Pierre D. MOURAD, Michel KLIOT, Robert C. A. FREDERICKSON
  • Patent number: 7547283
    Abstract: Systems and methods for determining ICP based on parameters that can be measured using non-invasive or minimally invasive techniques are provided, wherein a non-linear relationship is used to determine ICP based on one or more variable inputs. The first variable input relates to one or more properties of a cranial blood vessel and/or blood flow, such as acoustic backscatter from an acoustic transducer having a focus trained on a cranial blood vessel, flow velocity in a cranial blood vessel, and the like. Additional variables, such as arterial blood pressure (ABP), may be used in combination with a first variable input relating to one or more properties of a cranial blood vessel, such as flow velocity of the middle cerebral artery (MCA) to derive ICP using a non-linear relationship.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: June 16, 2009
    Assignee: PhysioSonics, Inc.
    Inventors: Pierre D. Mourad, Brandt Mohr, Michel Kliot, Robert C. A. Frederickson