Patents by Inventor Pin-Nan Tseng

Pin-Nan Tseng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894408
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Publication number: 20210305292
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Patent number: 11037978
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: June 15, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Publication number: 20200052014
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Patent number: 10510597
    Abstract: Methods for forming an integrated device using CMOS processing with wafer bonding. In an embodiment, a method is disclosed that includes defining an integrated circuit function using a front-end substrate having one or more active devices and a back-end substrate having connections formed in metal layers in dielectric material, wherein the back-end substrate is free from active devices; manufacturing the front-end substrate in a first semiconductor process; more or less simultaneously, manufacturing the back-end substrate in a second semiconductor process; physically contacting bonding surfaces of the front-end substrate and the back-end substrate; and performing wafer bonding to form bonds between the front-end and back-end substrates to form an integrated circuit. Additional methods are disclosed.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pin-Nan Tseng, Chia-Shiung Tsai, Ping-Yin Liu
  • Patent number: 10453889
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: October 22, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Publication number: 20170338150
    Abstract: Methods for forming an integrated device using CMOS processing with wafer bonding. In an embodiment, a method is disclosed that includes defining an integrated circuit function using a front-end substrate having one or more active devices and a back-end substrate having connections formed in metal layers in dielectric material, wherein the back-end substrate is free from active devices; manufacturing the front-end substrate in a first semiconductor process; more or less simultaneously, manufacturing the back-end substrate in a second semiconductor process; physically contacting bonding surfaces of the front-end substrate and the back-end substrate; and performing wafer bonding to form bonds between the front-end and back-end substrates to form an integrated circuit. Additional methods are disclosed.
    Type: Application
    Filed: August 7, 2017
    Publication date: November 23, 2017
    Inventors: Pin-Nan Tseng, Chia-Shiung Tsai, Ping-Yin Liu
  • Publication number: 20170317118
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Patent number: 9728453
    Abstract: Methods for forming an integrated device using CMOS processing with wafer bonding. In an embodiment, a method is disclosed that includes defining an integrated circuit function using a front-end substrate having one or more active devices and a back-end substrate having connections formed in metal layers in dielectric material, wherein the back-end substrate is free from active devices; manufacturing the front-end substrate in a first semiconductor process; more or less simultaneously, manufacturing the back-end substrate in a second semiconductor process; physically contacting bonding surfaces of the front-end substrate and the back-end substrate; and performing wafer bonding to form bonds between the front-end and back-end substrates to form an integrated circuit. Additional methods are disclosed.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: August 8, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pin-Nan Tseng, Chia-Shiung Tsai, Ping-Yin Liu
  • Patent number: 9711555
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: July 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Publication number: 20150091124
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Publication number: 20140273347
    Abstract: Methods for forming an integrated device using CMOS processing with wafer bonding. In an embodiment, a method is disclosed that includes defining an integrated circuit function using a front-end substrate having one or more active devices and a back-end substrate having connections formed in metal layers in dielectric material, wherein the back-end substrate is free from active devices; manufacturing the front-end substrate in a first semiconductor process; more or less simultaneously, manufacturing the back-end substrate in a second semiconductor process; physically contacting bonding surfaces of the front-end substrate and the back-end substrate; and performing wafer bonding to form bonds between the front-end and back-end substrates to form an integrated circuit. Additional methods are disclosed.
    Type: Application
    Filed: May 28, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pin-Nan Tseng, Chia-Shiung Tsai, Ping-Yin Liu
  • Patent number: 6448649
    Abstract: The present invention provides a structure and a method of electrically connecting wiring layers by forming a stacked plug interconnect. The first wiring layer is formed over a dielectric layer and a top barrier layer is formed over the top of the first wire layer. Next, first sidewall spacers preferably composed of titanium nitride and tungsten are formed on the first wire layer sidewalls. An inter metal dielectric layer is formed over the surface. A via is then etched exposing the first wiring layer. The first titanium nitride/tungsten spacers act as an etch stop for the via etch and also increase the contact area of the wiring layers. A tungsten plug with an outer TiN barrier layer is formed filling the via contacting the first wiring layer. On top of the tungsten plug, a second wiring layer is formed also having titanium nitride and tungsten sidewall spacers. The spacers also fill in the recesses in the TiN plug barrier layer and fill in dimples in the top of the tungsten plugs.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: September 10, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chung-Kuang Lee, Pin-Nan Tseng
  • Patent number: 6169314
    Abstract: This invention provides a circuit layout pattern and layout method for matching pairs of metal oxide semiconductor field effect transistors used in matched pairs in precision analog circuits. The layout uses dummy Metal oxide field effect transistors, or MOSFETs, to keep the environment the same around each of the MOSFETs in a matched pair. The MOSFETs in a matched pair are in a single row with each MOSFET in the matched pair having dummy MOSFETs adjacent to it on either side. The dummy MOSFETs can be part of the matched pair, can be used in other parts of the circuit, or may not be used. The use of dummy MOSFETs keeps the environment around each MOSFET in the matched pair the same and this improves the matching characteristics.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: January 2, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Shyh-Chyi Wong, Pin-Nan Tseng, Jyh-Kang Ting
  • Patent number: 5952698
    Abstract: This invention provides a circuit layout pattern and layout method for matching pairs of metal oxide semiconductor field effect transistors used in matched pairs in precision analog circuits. The layout uses dummy Metal oxide field effect transistors, or MOSFETs, to keep the environment the same around each of the MOSFETs in a matched pair. The MOSFETs in a matched pair are in a single row with each MOSFET in the matched pair having dummy MOSFETs adjacent to it on either side. The dummy MOSFETs can be part of the matched pair, can be used in other parts of the circuit, or may not be used. The use of dummy MOSFETs keeps the environment around each MOSFET in the matched pair the same and this improves the matching characteristics.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: September 14, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shyh-Chyi Wong, Pin-Nan Tseng, Jyh-Kang Ting
  • Patent number: 5866481
    Abstract: This invention relates to a method for protecting regions of a spin-on-glass(SOG) layer, which covers usable semiconductor dice, from dissolution damage during an etch step which removes SOG along the wafer edge. The endangered dice have portions which lie in the area affected by the edge rinse. Instead of performing the edge etching step immediately after the deposition of the SOG, the endangered dice are first selectively partially cured by exposure to ultraviolet radiation. This makes the SOG over these dice resistant to the SOG solvent used for the edge rinse. Up to ten percent of the total usable dice on the wafer can be salvaged by the method of this invention.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: February 2, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Chia-Shiung Tsai, Pin-Nan Tseng, Sung-Mu Hsu
  • Patent number: 5801096
    Abstract: A process for creating tungsten plugs, to fill high aspect ratio contact holes, has been developed. Narrow seams in the center of a tungsten plug, are protected from the tungsten RIE etch back process, thus avoiding the creation of larger seams or voids. This is accomplished by delaying the tungsten RIE etch back step until formation of an overlying interconnect metallization structure, which will protect the underlying tungsten plug, and seam, during the subsequent tungsten RIE etch back procedure.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: September 1, 1998
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Chung-Kuang Lee, Pin-Nan Tseng
  • Patent number: 5756396
    Abstract: The present invention provides a structure and a method of electrically connecting wiring layers by forming a stacked plug interconnect. The first wiring layer is formed over a dielectric layer and a top barrier layer is formed over the top of the first wire layer. Next, first sidewall spacers preferably composed of titanium nitride and tungsten are formed on the first wire layer sidewalls. An inter metal dielectric layer is formed over the surface. A via is then etched exposing the first wiring layer. The first titanium nitride/tungsten spacers act as an etch stop for the via etch and also increase the contact area of the wiring layers. A tungsten plug with an outer TiN barrier layer is formed filling the via contacting the first wiring layer. On top of the tungsten plug, a second wiring layer is formed also having titanium nitride and tungsten sidewall spacers. The spacers also fill in the recesses in the TiN plug barrier layer and fill in dimples in the top of the tungsten plugs.
    Type: Grant
    Filed: May 6, 1996
    Date of Patent: May 26, 1998
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd
    Inventors: Chung-Kuang Lee, Pin-Nan Tseng
  • Patent number: 5723893
    Abstract: A method is described for fabricating field effect transistors (FETs) having double silicide gate electrodes and interconnecting lines for CMOS circuits. The method reduces the IR voltage drops and RC time delay constants, and thereby improves circuit performance. The method consists of forming FETs having gate electrodes and interconnecting lines from a multilayer made up of a doped first polysilicon layer, a first silicide layer (WSi.sub.2), and a doped second polysilicon layer. After patterning the multilayer to form the gate electrodes, a titanium (Ti) metal is deposited and annealed to form a second silicide layer on the gate electrodes, and simultaneously forms self-aligned Ti silicide contacts on the source/drain areas. The latitude in overetching the contact openings in an insulating (PMD) layer to the gate electrodes extending over the field oxide area is increased, and the contact resistance (R.sub.c) is reduced because of the presence of the WSi.sub.
    Type: Grant
    Filed: May 28, 1996
    Date of Patent: March 3, 1998
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Douglas Chen-Hua Yu, Pin-Nan Tseng
  • Patent number: 5712207
    Abstract: A process for forming aluminum interconnect structures has been developed, that concentrates on alleviating the effects of the poor step coverage of the interconnect metallization, that develops in areas where aluminum overlies tungsten filled contact holes. A high pressure treatment of the aluminum based metallization layer is performed at pressures in the range of 50 to 120 Mega-pascal, to improve the coverage of the aluminum based layer, specifically in seams or voids in the underlying tungsten plugs.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: January 27, 1998
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Kuang Lee, Pi-Chen Shieh, Pin-Nan Tseng