Patents by Inventor Po-Chung Cheng
Po-Chung Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240385527Abstract: A control system includes a plurality of pressure sensors, each to detect a pressure in a respective dynamic gas lock (DGL) nozzle control region of a plurality of DGL nozzle control regions. Each DGL nozzle control region includes one or more DGL nozzles. The control system includes a plurality of mass flow controllers (MFCs). Each MFC of the plurality of MFCs is to control a flow velocity in a respective DGL nozzle control region of the plurality of DGL nozzle control regions. The control system includes a controller to selectively cause one or more MFCs of the plurality of MFCs to adjust flow velocities in one or more DGL nozzle control regions of the plurality of DGL nozzle control regions based on pressures detected by the plurality of pressure sensors in DGL nozzle control regions of the plurality of DGL nozzle control regions.Type: ApplicationFiled: July 30, 2024Publication date: November 21, 2024Inventors: Chun-Kai CHANG, Yu Sheng CHIANG, Yu De LIOU, Chi YANG, Ching-Juinn HUANG, Po-Chung CHENG
-
Publication number: 20240377720Abstract: A lithography mask includes a substrate that contains a low thermal expansion material (LTEM). The lithography mask also includes a reflective structure disposed over the substrate. The reflective structure includes a first layer and a second layer disposed over the first layer. At least the second layer is porous. The mask is formed by forming a multilayer reflective structure over the LTEM substrate, including forming a plurality of repeating film pairs, where each film pair includes a first layer and a porous second layer. A capping layer is formed over the multilayer reflective structure. An absorber layer is formed over the capping layer.Type: ApplicationFiled: July 22, 2024Publication date: November 14, 2024Inventors: Chih-Tsung Shih, Shih-Chang Shih, Li-Jui Chen, Po-Chung Cheng
-
Publication number: 20240361350Abstract: A method includes irradiating a target droplet in an extreme ultraviolet (EUV) light source of an extreme ultraviolet lithography tool with non-ionizing light from a droplet illumination module. The method further includes detecting light reflected and/or scattered by the target droplet, and performing particle image velocimetry, based on the detected light, to determine a velocity of the target droplet. The method also includes adjusting a time delay between a generation of the target droplet and a generation of an excitation laser beam based on the velocity of the target droplet.Type: ApplicationFiled: July 11, 2024Publication date: October 31, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: En Hao LAI, Chi YANG, Shang-Chieh CHIEN, Li-Jui CHEN, Po-Chung CHENG
-
Publication number: 20240353766Abstract: An extreme ultraviolet (EUV) lithography system includes a vane bucket module. The vane bucket module includes a temperature adjusting pack and a collecting tank inserted into the temperature adjusting pack. The temperature adjusting pack has a plurality of inlets. The collecting tank has a cover and the cover includes a plurality of through holes. The inlets of the temperature adjusting pack are aligned with the through holes of the cover. Each through hole has a minimum depth at a first position and a maximum depth at a second position. The first position is closer to a center of the cover than the second position.Type: ApplicationFiled: July 2, 2024Publication date: October 24, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ssu-Yu Chen, Po-Chung Cheng, Li-Jui Chen, Che-Chang Hsu, Chi Yang
-
Patent number: 12124178Abstract: A system is provided. The system includes an exposing device configured to generate a real-time image, including multiple first align marks, of a mask and an adjusting device configured to adjust an off-set of the mask from a pre-determined position to be smaller than a minimum aligning distance according to the first align marks and multiple align marks on a substrate, and further to move the mask closer to the pre-determined position to have a displacement, less than a minimum mapping distance, from the pre-determined position according to the real-time image and a reference image of the mask.Type: GrantFiled: May 1, 2023Date of Patent: October 22, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hao-Yu Lan, Po-Chung Cheng, Ching-Juinn Huang, Tzung-Chi Fu, Tsung-Yen Lee
-
Patent number: 12114412Abstract: A method for monitoring a shock wave in an extreme ultraviolet light source includes irradiating a target droplet in the extreme ultraviolet light source apparatus of an extreme ultraviolet lithography tool with ionizing radiation to generate a plasma and to detect a shock wave generated by the plasma. One or more operating parameters of the extreme ultraviolet light source is adjusted based on the detected shock wave.Type: GrantFiled: July 31, 2023Date of Patent: October 8, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yen-Shuo Su, Jen-Hao Yeh, Jhan-Hong Yeh, Ting-Ya Cheng, Henry Yee Shian Tong, Chun-Lin Chang, Han-Lung Chang, Li-Jui Chen, Po-Chung Cheng
-
Publication number: 20240324090Abstract: A metal reuse system for an extreme ultra violet (EUV) radiation source apparatus includes a first metal collector for collecting metal from vanes of the EUV radiation source apparatus, a first metal storage coupled to the first metal collector via a first conduit, a metal droplet generator coupled to the first metal storage via a second conduit, and a first metal filtration device disposed on either one of the first conduit and the second conduit.Type: ApplicationFiled: May 30, 2024Publication date: September 26, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wei-Shin CHENG, Han-Lung CHANG, Li-Jui CHEN, Po-Chung CHENG, Hsiao-Lun CHANG
-
Patent number: 12085861Abstract: A control system includes a plurality of pressure sensors, each to detect a pressure in a respective dynamic gas lock (DGL) nozzle control region of a plurality of DGL nozzle control regions. Each DGL nozzle control region includes one or more DGL nozzles. The control system includes a plurality of mass flow controllers (MFCs). Each MFC of the plurality of MFCs is to control a flow velocity in a respective DGL nozzle control region of the plurality of DGL nozzle control regions. The control system includes a controller to selectively cause one or more MFCs of the plurality of MFCs to adjust flow velocities in one or more DGL nozzle control regions of the plurality of DGL nozzle control regions based on pressures detected by the plurality of pressure sensors in DGL nozzle control regions of the plurality of DGL nozzle control regions.Type: GrantFiled: February 6, 2023Date of Patent: September 10, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun-Kai Chang, Yu Sheng Chiang, Yu De Liou, Chi Yang, Ching-Juinn Huang, Po-Chung Cheng
-
Patent number: 12085585Abstract: A method includes irradiating a target droplet in an extreme ultraviolet light source of an extreme ultraviolet lithography tool with light from a droplet illumination module. Light reflected and/or scattered by the target droplet is detected. Particle image velocimetry is performed to monitor one or more flow parameters inside the extreme ultraviolet light source.Type: GrantFiled: May 3, 2023Date of Patent: September 10, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: En Hao Lai, Chi Yang, Shang-Chieh Chien, Li-Jui Chen, Po-Chung Cheng
-
Publication number: 20240296272Abstract: A method includes forming a transistor layer; forming a first metallization layer, including: forming first conductors, aligned along alpha tracks, and representing input pins of a cell region including first and second input pins; and cutting lengths of the first and second input pins to accommodate at most two access points, each aligned to a different one of first to fourth beta tracks, the beta tracks to which are aligned the access points of the first input pin being different than the beta tracks to which are aligned the access points of the second input pin; and forming a second metallization layer, including: forming second conductors representing routing segments and a representing a power grid segment aligned with one of the beta tracks of access points of the first input pin or the access points of the second input pin.Type: ApplicationFiled: May 10, 2024Publication date: September 5, 2024Inventors: Pin-Dai SUE, Po-Hsiang HUANG, Fong-Yuan CHANG, Chi-Yu LU, Sheng-Hsiung CHEN, Chin-Chou LIU, Lee-Chung LU, Yen-Hung LIN, Li-Chun TIEN, Yi-Kan CHENG
-
Publication number: 20240297476Abstract: The present disclosure provides a method for aligning a master oscillator power amplifier (MOPA) system. The method includes ramping up a pumping power input into a laser amplifier chain of the MOPA system until the pumping power input reaches an operational pumping power input level; adjusting a seed laser power output of a seed laser of the MOPA system until the seed laser power output is at a first level below an operational seed laser power output level; and performing a first optical alignment process to the MOPA system while the pumping power input is at the operational pumping power input level, the seed laser power output is at the first level, and the MOPA system reaches a steady operational thermal state.Type: ApplicationFiled: April 26, 2024Publication date: September 5, 2024Inventors: Chun-Lin Louis Chang, Henry Tong Yee Shian, Alan Tu, Han-Lung Chang, Tzung-Chi Fu, Bo-Tsun Liu, Li-Jui Chen, Po-Chung Cheng
-
Publication number: 20240274592Abstract: A cell region of a semiconductor device includes: active regions (ARs) formed as predetermined shapes on a substrate including first and second ARs having a first shape and correspondingly first and second dopant types, a third AR having a second shape and the second dopant type, and a fourth AR having a third shape and the first dopant type. The first and second ARs are arranged in a first area of the cell region. The third and fourth ARs are arranged in a second area of the cell region. The second area is adjacent to the first area relative to a first direction (e.g., Y-axis (vertical adjacency-architecture) or X-axis (horizontal adjacency-architecture)). The first shape is smaller than the second shape. The second shape is smaller than the third shape.Type: ApplicationFiled: June 12, 2023Publication date: August 15, 2024Inventors: Han-Chung CHANG, Kuang-Ching CHANG, Jia-Hong GAO, Po-Chih CHENG, Hui-Zhong ZHUANG
-
Patent number: 12055865Abstract: An extreme ultraviolet (EUV) lithography system includes a vane bucket module. The vane bucket module includes a temperature adjusting pack and a collecting tank inserted into the temperature adjusting pack. The temperature adjusting pack has a plurality of inlets. The collecting tank has a cover and the cover includes a plurality of through holes. The inlets of the temperature adjusting pack are aligned with the through holes of the cover. Thicknesses of edges of the cover is different from a thickness of a center of the cover.Type: GrantFiled: August 6, 2021Date of Patent: August 6, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ssu-Yu Chen, Po-Chung Cheng, Li-Jui Chen, Che-Chang Hsu, Chi Yang
-
Publication number: 20240258095Abstract: A particle removal apparatus is provided. The apparatus includes a reticle holder configured to hold a reticle, a robotic arm, and a particle removal device disposed on the robotic arm. The particle removal device includes a solution spraying module, a sucking module, and a baffle. The robotic arm and the particle removal device are configured to align with a particle on the backside of the reticle. The solution spraying module is configured to spray a solution onto the particle to remove the particle. The baffle is configured to be disposed over the backside of the reticle to define enclosed area that encompasses the particle to be removed. The sucking module is configured to suck the solution on the reticle with the particles being removed.Type: ApplicationFiled: April 15, 2024Publication date: August 1, 2024Inventors: Siao-Chian HUANG, Po-Chung CHENG, Ching-Juinn HUANG, Tzung-Chi FU, Tsung-Yen LEE
-
Patent number: 12028959Abstract: A metal reuse system for an extreme ultra violet (EUV) radiation source apparatus includes a first metal collector for collecting metal from vanes of the EUV radiation source apparatus, a first metal storage coupled to the first metal collector via a first conduit, a metal droplet generator coupled to the first metal storage via a second conduit, and a first metal filtration device disposed on either one of the first conduit and the second conduit.Type: GrantFiled: July 27, 2022Date of Patent: July 2, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wei-Shin Cheng, Han-Lung Chang, Li-Jui Chen, Po-Chung Cheng, Hsiao-Lun Chang
-
Patent number: 12025918Abstract: A method for lithography in semiconductor fabrication is provided. The method includes placing a semiconductor wafer over a wafer stage. The method also includes supplying an initial voltage to a plurality of electrodes of the wafer stage based on a topology of the semiconductor wafer, wherein the electrodes of the wafer stage are electrically isolated from each other. The method further includes measuring an adjusted topology of the semiconductor wafer after the initial voltage is supplied. In addition, the method includes supplying different first adjusted voltages to the electrodes of the wafer stage according to the adjusted topology of the semiconductor wafer.Type: GrantFiled: January 9, 2023Date of Patent: July 2, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Cheng-Kuan Wu, Po-Chung Cheng, Li-Jui Chen, Chih-Tsung Shih
-
Patent number: 11997778Abstract: A method includes following steps. A photoresist-coated substrate is received to an extreme ultraviolet (EUV) tool. An EUV radiation is directed from a radiation source onto the photoresist-coated substrate, wherein the EUV radiation is generated by an excitation laser hitting a plurality of target droplets ejected from a first droplet generator. The first droplet generator is replaced with a second droplet generator at a temperature not lower than about 150° C.Type: GrantFiled: December 9, 2022Date of Patent: May 28, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shih-Yu Tu, Han-Lung Chang, Hsiao-Lun Chang, Li-Jui Chen, Po-Chung Cheng
-
Patent number: 11984314Abstract: A particle removal method for removing particles on the backside of a reticle is provided. The method includes disposing the reticle on a reticle holder. In addition, the method includes moving a baffle defining an enclosed area that encompasses a particle to be removed on a backside of the reticle. The method further includes spraying, by a solution spraying module of a particle removal device, a solution onto the particle. The method further includes sucking, by a sucking module of the particle removal device, the solution on the reticle with the particle. The method further includes emitting, by the particle removal device, a gas onto the backside of the reticle for drying the backside.Type: GrantFiled: July 9, 2021Date of Patent: May 14, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Siao-Chian Huang, Po-Chung Cheng, Ching-Juinn Huang, Tzung-Chi Fu, Tsung-Yen Lee
-
Patent number: 11982944Abstract: A method of lithography process is provided. The method includes forming a conductive layer over a reticle. The method includes applying ionized particles to the reticle by a discharging device. The method includes forming a photoresist layer over a semiconductor substrate. The method includes securing the semiconductor substrate by a wafer electrostatic-clamp. The method also includes patterning the photoresist layer by emitting radiation from a radiation source via the reticle.Type: GrantFiled: May 31, 2023Date of Patent: May 14, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsiao-Lun Chang, Chueh-Chi Kuo, Tsung-Yen Lee, Tzung-Chi Fu, Li-Jui Chen, Po-Chung Cheng, Che-Chang Hsu
-
Patent number: 11979971Abstract: An extreme ultra violet (EUV) radiation source apparatus includes a collector mirror, a target droplet generator for generating a tin (Sn) droplet, a rotatable debris collection device, one or more coils for generating an inductively coupled plasma (ICP), a gas inlet for providing a source gas for the ICP, and a chamber enclosing at least the collector mirror and the rotatable debris collection device. The gas inlet and the one or more coils are configured such that the ICP is spaced apart from the collector mirror.Type: GrantFiled: April 10, 2019Date of Patent: May 7, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yen-Shuo Su, Chun-Lin Chang, Han-Lung Chang, Li-Jui Chen, Po-Chung Cheng