Patents by Inventor Po-Kang Wang

Po-Kang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6960281
    Abstract: A method for forming a trimmed upper pole piece for a magnetic write head, said pole piece having a tapered profile that is widest at its trailing edge. Such a pole piece is capable of writing narrow tracks with sharply and well defined patterns and minimal overwriting of adjacent tracks. The present method produces the necessary taper by using NiCr, NiFeCr, Rh or Ru as write gap filling materials which have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and are highly corrosion resistant. As a result, the write gap does not protrude to mask the effects of the ion-beam etch used to form the taper.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: November 1, 2005
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Mao-Min Chen, Po Kang Wang, Fenglin Liu
  • Publication number: 20050221511
    Abstract: Improved MRAM arrays and a method of forming the same are disclosed in which a bit line has thinner portions formed over MTJs and thicker portions therebetween. Bottom electrodes are formed in a first insulation layer on a substrate and then MTJs and a coplanar second insulation layer are formed thereon. After a second conductive layer comprised of lower metal lines is formed above the MTJs, a trench is formed in a stack of insulation layers above portions of the lower metal lines. A barrier layer and upper metal layer are sequentially deposited and then planarized to form a filled trench that effectively increases a bit line thickness. The lower metal layer is a thin bit line in regions over MTJs. The method may also comprise forming word lines on an insulation layer that are aligned over the MTJs and perpendicular to the bit lines.
    Type: Application
    Filed: April 1, 2004
    Publication date: October 6, 2005
    Inventors: Po-Kang Wang, Liubo Hong
  • Publication number: 20050219895
    Abstract: An MTJ MRAM cell element, whose free layer has a shape induced magnetic anisotropy, is formed between orthogonal word and bit lines. The bit line is a composite line which includes a high conductivity current carrying layer and a soft adjacent magnetic layer (SAL). During operation, the soft magnetic layer concentrates the magnetic field of the current and, due to its proximity to the free layer, it magnetically couples with the free layer to produce two magnetization states of greater and lesser stability. During switching, the layer is first placed in the less stable state by a word line current, so that a small bit line current can switch its magnetization direction. After switching, the state reverts to its more stable form as a result of magnetostatic interaction with the SAL, which prevents it from being accidentally rewritten when it is not actually selected and also provides stability against thermal agitation.
    Type: Application
    Filed: April 6, 2004
    Publication date: October 6, 2005
    Inventors: Yimin Guo, Po-Kang Wang, Xizeng Shi, Tai Min
  • Patent number: 6943040
    Abstract: A magnetic tunneling junction (MTJ) memory cell for a magnetic random access memory (MRAM) array is formed as a chain of magnetostatically coupled segments. The segments can be circular, elliptical, lozenge shaped or shaped in other geometrical forms. Unlike the isolated cells of typical MTJ designs which exhibit curling of the magnetization at the cell ends and uncompensated pole structures, the present multi-segmented design, with the segments being magnetostatically coupled, undergoes magnetization switching at controlled nucleation sites by the fanning mode. As a result, the multi-segmented cells of the present invention are not subject to variations in switching fields due to shape irregularities and structural defects.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 13, 2005
    Assignee: Headway Technologes, Inc.
    Inventors: Tai Min, Po Kang Wang
  • Patent number: 6943995
    Abstract: To form a spin valve device, start by forming a gap layer. Form a buffer layer with a layer of refractory material on the buffer layer. Form patterned underlayers including a magnetic material for providing trackwidth and longitudinal bias on the buffer layer comprising either a lower antiferromagnetic layer stacked with a ferromagnetic layer or a Cr layer stacked with a permanent magnetic layer. Form an inwardly tapered depression in the patterned underlayers down to the buffer layer by either ion milling through a mask or a stencil lift off technique. Form layers covering the patterned underlayers that cover the inwardly tapered depression. Form free, pinned, spacer and antiferromagnetic layers. Form conductors either on a surface of the antiferromagnetic layer aside from the depression or between the buffer layer and the patterned underlayers.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: September 13, 2005
    Assignee: Headway Technologies, Inc.
    Inventors: Tai Min, Po-Kang Wang, Moris Musa Dovek
  • Publication number: 20050180201
    Abstract: A method and system for programming a magnetic memory is disclosed. The method and system further include turning on a word line current and turning on a bit line current. The word line current is for generating at least one hard axis field. The bit line current is for generating at least one easy axis field. In one aspect, the method and system further include turning off the word line current and the bit line current such that a state of the at least one magnetic memory cell is repeatably obtained. In another aspect, the word line current is turned off after the bit line current is turned off.
    Type: Application
    Filed: June 3, 2004
    Publication date: August 18, 2005
    Inventors: Xizeng Shi, Son Le, Po-Kang Wang, Tai Min
  • Patent number: 6929957
    Abstract: A magnetic tunneling junction (MTJ) memory cell and an MRAM array of such cells, is shielded by magnetic shields of ferromagnetic material or by ferromagnetic shields that are stabilized by patterned layers of antiferromagnetic material or permanent magnetic material. The ferromagnetic portions of the shields surround the MTJ cells substantially conformally and thereby can compensate the poles of the free layers of MTJ cells of various geometric cross-sectional shapes and also protect the cells from the adverse effects of extraneous fields. The additional antiferromagnetic and permanent magnetic materials stabilize the shields by exchange or direct coupling.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: August 16, 2005
    Assignee: Headway Technologies, Inc.
    Inventors: Tai Min, Po Kang Wang
  • Publication number: 20050128649
    Abstract: In magnetic read heads based on bottom spin valves the preferred structure is for the longitudinal bias layer to be in direct contact with the free layer. Such a structure is very difficult to manufacture. The present invention overcomes this problem by introducing an extra layer between the bias electrodes and the free layer. This layer protects the free layer during processing but is thin enough to not interrupt exchange between the bias electrodes and the free layer. In one embodiment this is a layer of copper about 5 ? thick and parallel exchange is operative. In other embodiments ruthenium is used to provide antiparallel exchange between the bias electrode and the free layer. A process for manufacturing the structure is also described.
    Type: Application
    Filed: January 14, 2005
    Publication date: June 16, 2005
    Inventors: Moris Dovek, Po-Kang Wang, Chen-Jung Chien, Chyu-Jiuh Torng, Yun-Fei Li
  • Patent number: 6879474
    Abstract: The possibility of shorting between a spin valve and its underlying magnetic shield layer can be largely eliminated by choosing the bottom spin valve structure. However, doing so causes the hard longitudinal bias that is standard for all such devices to degrade. The present invention overcomes this problem by inserting a thin NiCr, Ni, Fe, or Cr layer between the antiferromagnetic layer and the longitudinal bias layers. This provides a smoother surface for the bias layers to be deposited onto, thereby removing structural distortions to the longitudinal bias layer that would otherwise be present. A process for manufacturing the structure is also described.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: April 12, 2005
    Assignee: Headway Technologies, Inc.
    Inventors: Chen-Jung Chien, Chyu-Jiuh Torng, Cherng-Chyi Han, Moris Dovek, Po-Kang Wang, Mao-Min Chen
  • Publication number: 20050047011
    Abstract: Present processes used for planarizing a cavity filled with a coil and hard baked photoresist require that a significant amount of the thickness of the coils be removed. This increases the DC resistance of the coil. In the present invention, cavity and coil are overfilled with photoresist which is then hard baked. A layer of alumina is then deposited onto the surface of the excess photoresist, following which CMP is initiated. The presence of the alumina serves to stabilize the photoresist so that it does not delaminate. CMP is terminated as soon as the coils are exposed, allowing their full thickness to be retained and resulting in minimum DC resistance.
    Type: Application
    Filed: August 25, 2003
    Publication date: March 3, 2005
    Inventors: Cherng-Chyi Han, Mao-Min Chen, Po-Kang Wang
  • Publication number: 20050048674
    Abstract: A method and system for providing a magnetic element and a magnetic memory using the magnetic element are disclosed. The magnetic memory includes a plurality of magnetic elements. The method and system include providing a plurality of layers and a passivation layer for each of the plurality of magnetic elements. A portion of the layers in the magnetic element includes at least one magnetic layer. The plurality of layers also has a top and a plurality of sides. The passivation layer covers at least a portion of the plurality of sides.
    Type: Application
    Filed: February 17, 2004
    Publication date: March 3, 2005
    Inventors: Xizeng Shi, Po-Kang Wang, Yimin Guo, Tai Min
  • Patent number: 6842969
    Abstract: In magnetic read heads based on bottom spin valves the preferred structure is for the longitudinal bias layer to be in direct contact with the free layer. Such a structure is very difficult to manufacture. The present invention overcomes this problem by using a liftoff technique to form, on the free layer, a buffer layer having a trapezoidal cross-section, sloping sidewalls, and a central area of uniform thickness, whose width defines the read track. A suitable bias layer and leads are then deposited on this buffer layer.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: January 18, 2005
    Assignee: Headway Technologies, Inc.
    Inventors: Moris Dovek, Po-Kang Wang, Chen-Jung Chien, Chyu-Jiuh Torng, Yun-Fei Li
  • Publication number: 20040223269
    Abstract: As track density requirements for disk drives have grown more aggressive, GMR devices have been pushed to narrower track widths to match the track pitch of the drive width. Narrower track widths degrade stability, cause amplitude loss, due to the field originating from the hard bias structure, and side reading. This problem has been overcome by adding an additional layer of soft magnetic material above the hard bias layers. The added layer provides flux closure to the hard bias layers thereby preventing flux leakage into the gap region. A non-magnetic layer must be included to prevent exchange coupling to the hard bias layers. In at least one embodiment the conductive leads are used to accomplish this. A process for manufacturing the device is also described.
    Type: Application
    Filed: May 28, 2004
    Publication date: November 11, 2004
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Po Kang Wang, Moris Dovek, Jibin Geng, Tai Min
  • Publication number: 20040184190
    Abstract: A method for forming a trimmed upper pole piece for a magnetic write head, said pole piece having a tapered profile that is widest at its trailing edge. Such a pole piece is capable of writing narrow tracks with sharply and well defined patterns and minimal overwriting of adjacent tracks. The present method produces the necessary taper by using NiCr, NiFeCr, Rh or Ru as write gap filling materials which have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and are highly corrosion resistant. As a result, the write gap does not protrude to mask the effects of the ion-beam etch used to form the taper.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Applicant: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Mao-Min Chen, Po Kang Wang, Fenglin Liu
  • Patent number: 6760966
    Abstract: As track density requirements for disk drives have grown more aggressive, GMR devices have been pushed to narrower track widths to match the track pitch of the drive width. Narrower track widths degrade stability, cause amplitude loss, due to the field originating from the hard bias structure, and side reading. This problem has been overcome in a process of manufacturing a device by adding an additional layer of soft magnetic material above the hard bias layers. The added layer provides flux closure to the hard bias layers thereby preventing flux leakage into the gap region. A non-magnetic layer must be included to prevent exchange coupling to the hard bias layers. In at least one embodiment the conductive leads are used to accomplish this.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: July 13, 2004
    Assignee: Headway Technologies, Inc.
    Inventors: Po Kang Wang, Moris Dovek, Jibin Geng, Tai Min
  • Publication number: 20040105192
    Abstract: The possibility of shorting between a spin valve and its underlying magnetic shield layer can be largely eliminated by choosing the bottom spin valve structure. However, doing so causes the hard longitudinal bias that is standard for all such devices to degrade. The present invention overcomes this problem by inserting a thin NiCr, Ni, Fe, or Cr layer between the antiferromagnetic layer and the longitudinal bias layers. This provides a smoother surface for the bias layers to be deposited onto, thereby removing structural distortions to the longitudinal bias layer that would otherwise be present. A process for manufacturing the structure is also described.
    Type: Application
    Filed: November 21, 2003
    Publication date: June 3, 2004
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Chen-Jung Chien, Chyu-Jiuh Torng, Cherng-Chyi Han, Moris Dovek, Po-Kang Wang, Mao-Min Chen
  • Publication number: 20040105191
    Abstract: A spin valve device comprises a free layer, a spacer layer, a pinned layer, an antiferromagnetic layer, and a patterned underlayer that includes a magnetic material for providing trackwidth and longitudinal bias. The patterned underlayer can comprise a buffer layer, an antiferromagnetic layer and a ferromagnetic layer. Alternatively, the patterned underlayer can comprises a buffer layer, a chromium layer and a hard biasing, permanent magnetic layer which provides trackwidth and longitudinal bias. A lower conductor can be located on the underlayer.
    Type: Application
    Filed: July 10, 2003
    Publication date: June 3, 2004
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Tai Min, Po-Kang Wang, Moris Musa Dovek
  • Publication number: 20040070880
    Abstract: Method and apparatus are presented for electrically coupling a slider to ground. In one embodiment, a bonding pad is provided on a side of the slider body separate from the bonding pad(s) used for read/write signals. This separate bonding pad is electrically coupled within the slider body to components that are to be coupled to ground. A separate conductor provided on the suspension (e.g., a trace, a flex circuit, etc.) may be electrically coupled to the separate bonding pad via gold ball bonding. The conductor is also coupled to ground in the hard-disk drive device (e.g., via the preamplifier). The use of the separated bonding pad and trace may negate the need to use a conductive adhesive to electrically ground the slider via its attachment to the tongue of a slider.
    Type: Application
    Filed: April 16, 2003
    Publication date: April 15, 2004
    Inventors: Yen Fu, Ellis Cha, Po-Kang Wang, Hong Tian, Manuel Hernandez, Yaw-Shing Tang, Ben Hu
  • Patent number: 6668443
    Abstract: The possibility of shorting between a spin valve and its underlying magnetic shield layer can be largely eliminated by choosing the bottom spin valve structure. However, doing so causes the hard longitudinal bias that is standard for all such devices to degrade. The present invention overcomes this problem by inserting a thin NiCr, Ni, Fe, or Cr layer between the antiferromagnetic layer and the longitudinal bias layers. This provides a smoother surface for the bias layers to be deposited onto, thereby removing structural distortions to the longitudinal bias layer that would otherwise be present. A process for manufacturing the structure is also described.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 30, 2003
    Assignee: Headway Technologies, Inc.
    Inventors: Chen-Jung Chien, Chyu-Jiuh Torng, Cherng-Chyi Han, Moris Dovek, Po-Kang Wang, Mao-Min Chen
  • Patent number: 6663920
    Abstract: A method for forming a magnetoresistive (MR) layer first employs a substrate over which is formed a magnetoresistive (MR) layer formed of a magnetoresistive (MR) material. There is then ion implanted selectively, while employing an ion implant method, the magnetoresistive (MR) layer to form: (1) an ion implanted portion of the magnetoresistive (MR) layer formed of an ion implanted magnetoresistive (MR) material; and (2) an adjoining non ion implanted portion of the magnetoresistive (MR) layer formed of the magnetoresistive (MR) material, where the ion implanted magnetoresistive (MR) material is a non magnetoresistive (MR) material. The method may be employed for forming within magnetoresistive (MR) sensor elements magnetoresistive (MR) layers with enhanced dimensional uniformity, and in particular enhanced overlay dimensional uniformity.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: December 16, 2003
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Rong-Fu Xiao, Mao-Min Chen, Po-Kang Wang