Patents by Inventor Po-Wen Su

Po-Wen Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088279
    Abstract: A method for forming a semiconductor structure includes the steps of forming a stacked structure on a substrate, forming an insulating layer on the stacked structure, forming a passivation layer on the insulating layer, performing an etching process to form an opening through the passivation layer and the insulating layer to expose a portion of the stacked structure and an extending portion of the insulating layer, and forming a contact structure filling the opening and directly contacting the stacked structure, wherein the extending portion of the insulating layer is adjacent to a surface of the stacked structure directly contacting the contact structure.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Chang, Po-Wen Su, Chih-Tung Yeh
  • Publication number: 20240077349
    Abstract: A server includes a chassis, an air duct, a sensing module and a board management controller. The air duct is disposed in the chassis. The sensing module is disposed in the chassis. The sensing module senses whether the air duct is correctly installed. The board management controller is disposed in the chassis and coupled to the sensing module. When the air duct is not correctly installed, the sensing module notifies the board management controller to generate a warning message.
    Type: Application
    Filed: October 3, 2022
    Publication date: March 7, 2024
    Applicant: Wiwynn Corporation
    Inventors: Po-Sheng Su, Ching-Wen Hsiao, Hsien-Yu Wang, Tzu-Shun Wang
  • Patent number: 11881518
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: January 23, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Patent number: 11810786
    Abstract: A method for fabricating a semiconductor device includes following steps: A patterned mask layer including a plurality of standing walls and a covering part is formed on a surface of a semiconductor substrate, wherein two adjacent standing walls define a first opening exposing a part of the surface, and the covering part blankets the surface. A first patterned photoresist layer is formed to partially cover the covering part. A first etching process is performed to form a first trench in the substrate, passing through the surface and aligning with the first opening. A portion of the patterned mask layer is removed to form a second opening exposing another portion of the surface. A second etching process is performed to form a second trench in the substrate and define an active area on the surface. The depth of the first trench is greater than that of the second trench.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: November 7, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Wen Su, Cheng-Han Lu
  • Publication number: 20230147512
    Abstract: An OTP memory capacitor structure includes a semiconductor substrate, a bottom electrode, a capacitor insulating layer and a metal electrode stack structure. The bottom electrode is provided on the semiconductor substrate. The capacitor insulating layer is provided on the bottom electrode. The metal electrode stack structure includes a metal layer, an insulating sacrificial layer and a capping layer stacked in sequence. The metal layer is provided on the capacitor insulating layer and is used as a top electrode. The insulating sacrificial layer is provided between the metal layer and the capping layer. A manufacturing method of the OTP memory capacitor structure is also provided. By the provision of the insulating sacrificial layer, the bottom electrode formed first can be prevented from being damaged by subsequent etching and other processes, so that the OTP memory capacitor structure has better electrical characteristics.
    Type: Application
    Filed: December 7, 2021
    Publication date: May 11, 2023
    Inventors: KUO-HSING LEE, Po-Wen Su, Chien-Liang Wu, Sheng-Yuan Hsueh
  • Publication number: 20230100904
    Abstract: A high electron mobility transistor (HEMT) includes a buffer layer on a substrate, ridges extending along a first direction on the buffer layer, gaps extending along the first direction between the ridges, a p-type semiconductor layer extending along a second direction on the ridges and inserted into the gaps, and a source electrode and a drain electrode adjacent to two sides of the p-type semiconductor layer. Preferably, the source electrode and the drain electrode are extending along the second direction and directly on top of the ridges.
    Type: Application
    Filed: December 6, 2022
    Publication date: March 30, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Wen Su, Ming-Hua Chang, Shui-Yen Lu
  • Publication number: 20230102890
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a patterned mask on the buffer layer; using the patterned mask to remove the buffer layer for forming ridges and a damaged layer on the ridges; removing the damaged layer; forming a barrier layer on the ridges; and forming a p-type semiconductor layer on the barrier layer.
    Type: Application
    Filed: December 6, 2022
    Publication date: March 30, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Wen Su, Ming-Hua Chang, Shui-Yen Lu
  • Patent number: 11552187
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a patterned mask on the buffer layer; using the patterned mask to remove the buffer layer for forming ridges and a damaged layer on the ridges; removing the damaged layer; forming a barrier layer on the ridges; and forming a p-type semiconductor layer on the barrier layer.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: January 10, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Wen Su, Ming-Hua Chang, Shui-Yen Lu
  • Publication number: 20220415647
    Abstract: A method for fabricating a semiconductor device includes following steps: A patterned mask layer including a plurality of standing walls and a covering part is formed on a surface of a semiconductor substrate, wherein two adjacent standing walls define a first opening exposing a part of the surface, and the covering part blankets the surface. A first patterned photoresist layer is formed to partially cover the covering part. A first etching process is performed to form a first trench in the substrate, passing through the surface and aligning with the first opening. A portion of the patterned mask layer is removed to form a second opening exposing another portion of the surface. A second etching process is performed to form a second trench in the substrate and define an active area on the surface. The depth of the first trench is greater than that of the second trench.
    Type: Application
    Filed: July 27, 2021
    Publication date: December 29, 2022
    Inventors: Po-Wen SU, Cheng-Han LU
  • Publication number: 20220367693
    Abstract: A semiconductor structure includes a substrate, a stacked structure on the substrate, an insulating layer on the stacked structure, a passivation layer on the insulating layer, and a contact structure through the passivation layer and the insulating layer and directly contacting the stacked structure. The insulating layer has an extending portion protruding from a sidewall of the passivation layer and adjacent to a surface of the stacked structure directly contacting the contact structure.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 17, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Chang, Po-Wen Su, Chih-Tung Yeh
  • Publication number: 20220077300
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 10, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Publication number: 20220069102
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Patent number: 11205710
    Abstract: A fabricating method of a semiconductor structure includes the following steps. A gate material layer is formed on a semiconductor substrate. A patterned mask layer is formed on the gate material layer. The pattern mask layer includes at least one opening exposing a part of the gate material layer. An impurity treatment is performed to the gate material layer partially covered by the pattern mask layer for forming at least one doped region in the gate material layer. An etching process is performed to remove the gate material layer including the doped region. A dummy gate may be formed by patterning the gate material layer, and the impurity treatment may be performed after the step of forming the dummy gate. The performance of the etching processes for removing the gate material layer and/or the dummy gate may be enhanced, and the gate material residue issue may be solved accordingly.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 21, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Chien Hsieh, En-Chiuan Liou, Chih-Wei Yang, Yu-Cheng Tung, Po-Wen Su
  • Patent number: 11205705
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 21, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Patent number: 11145733
    Abstract: The present invention discloses a method for forming a semiconductor device with a reduced silicon horn structure. After a pad nitride layer is removed from a substrate, a hard mask layer is conformally deposited over the substrate. The hard mask layer is then etched and trimmed to completely remove a portion of the hard mask layer from an active area and a portion of the hard mask layer from an oblique sidewall of a protruding portion of a trench isolation region around the active area. The active area is then etched to form a recessed region. A gate dielectric layer is formed in the recessed region and a gate electrode layer is formed on the gate dielectric layer.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: October 12, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Hung Chen, Chih-Kai Hsu, Ssu-I Fu, Chia-Jung Hsu, Chun-Ya Chiu, Yu-Hsiang Lin, Po-Wen Su, Chung-Fu Chang, Guang-Yu Lo, Chun-Tsen Lu
  • Publication number: 20210249529
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a patterned mask on the buffer layer; using the patterned mask to remove the buffer layer for forming ridges and a damaged layer on the ridges; removing the damaged layer; forming a barrier layer on the ridges; and forming a p-type semiconductor layer on the barrier layer.
    Type: Application
    Filed: March 4, 2020
    Publication date: August 12, 2021
    Inventors: Po-Wen Su, Ming-Hua Chang, Shui-Yen Lu
  • Publication number: 20200144387
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 7, 2020
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Patent number: 10522652
    Abstract: A semiconductor device and a method for fabricating the same are provided. A structure of the semiconductor device includes a substrate having a device region and an edge region. A plurality of device structures is formed on the substrate. An etching stop layer is disposed in the edge region of the substrate. The etching stop layer is converted from P-type dopants from an exposed surface layer of the substrate.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: December 31, 2019
    Assignee: United Microelectronics Corp.
    Inventors: Po-Wen Su, Chih-Wei Lin, Wei-Chih Lai, Tai-Yen Lin
  • Patent number: 10505007
    Abstract: A semiconductor device includes a metal gate on a substrate, in which the metal gate includes a first work function metal (WFM) layer and the first WFM layer further includes a first vertical portion, a second vertical portion, wherein the first vertical portion and the second vertical portion comprise different heights, and a first horizontal portion connecting the first vertical portion and the second vertical portion.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: December 10, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Wen Su, Wen-Yen Huang, Kuan-Ying Lai, Shui-Yen Lu
  • Patent number: 10483158
    Abstract: A method of fabricating a contact hole structure includes providing a substrate with an epitaxial layer embedded therein. Next, an interlayer dielectric is formed to cover the substrate. After that, a first hole is formed in the interlayer dielectric and the epitaxial layer. Later, a mask layer is formed to cover a sidewall of the first hole and expose a bottom of the first hole. Subsequently, a second hole is formed by etching the epitaxial layer at the bottom of the first hole and taking the mask layer and the interlayer dielectric as a mask, wherein the first hole and the second hole form a contact hole. Then, the mask layer is removed. Finally, a silicide layer is formed to cover the contact hole.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 19, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Wen Su, Hsuan-Tai Hsu, Kuan-Hsuan Ku