Patents by Inventor Pramodsingh H. Thakur

Pramodsingh H. Thakur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240032868
    Abstract: Disclosed are medical devices with an acceleration sensor for generating acceleration data, at least two electrodes for generating electrocardiogram (ECG) data, a processor, and memory. The memory, which may be a non-transitory computer readable medium, contains computer-executable instructions that, when executed by the processor, causes the processor to perform the following: obtain the acceleration data and the ECG data from a first range of time and a second range of time different from the first range, generate respiration data based on the acceleration data, and determine that the medical device has flipped in orientation during the second range of time by comparing the respiration data and the ECG data of the first range of time with the respiration data and the ECG data of the second range of time.
    Type: Application
    Filed: July 25, 2023
    Publication date: February 1, 2024
    Inventors: Jonathan B. Shute, Pramodsingh H. Thakur, Bin Mi, John D. Hatlestad
  • Publication number: 20230201605
    Abstract: Disclosed are medical devices with an acceleration sensor configured to generate acceleration data, a processor, and a memory. The memory, which may be a non-transitory computer readable medium, contains computer-executable instructions that, when executed by the processor, causes the processor to perform the following: obtain the acceleration data from a first range of time and a second range of time different from the first range, generate heart sound data based on the acceleration data, and determine that the medical device has flipped in orientation during the second range of time by comparing the heart sound data obtained during the first range of time with the heart sound data obtained during the second range of time.
    Type: Application
    Filed: December 27, 2022
    Publication date: June 29, 2023
    Inventors: Jonathan B. Shute, Pramodsingh H. Thakur, John D. Hatlestad, Keith R. Maile
  • Patent number: 11540728
    Abstract: Embodiments of the present disclosure relate to heart sound measurements using mobile devices. In an embodiment, a medical system for monitoring heart sounds of a subject comprises a medical device configured to obtain, during a first sampling interval, a first physiological signal. The medical system further comprises a mobile device comprising an accelerator, wherein the accelerator is configured to obtain, during a second sampling interval, a second physiological signal. And, the medical system comprises an analysis component configured to extract heart sounds data from the second physiological signal.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: January 3, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan B. Shute, Kyle H. Srivastava, Pramodsingh H. Thakur, Keith R. Maile
  • Publication number: 20220257948
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for pacing a HIS bundle of a patient. The apparatuses, systems, and methods may include applying stimulation energy through one or more of a plurality of electrodes to direct a stimulation locus and pace a HIS bundle of a patient.
    Type: Application
    Filed: May 5, 2022
    Publication date: August 18, 2022
    Inventors: Pramodsingh H. Thakur, Allan C. Shuros, Brian Soltis, Juan G. Hincapie, Qi An, Yinghong Yu, Keith R. Maile
  • Patent number: 11338145
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for pacing a HIS bundle of a patient. The apparatuses, systems, and methods may include applying stimulation energy through one or more of a plurality of electrodes to direct a stimulation locus and pace a HIS bundle of a patient.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: May 24, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh H. Thakur, Allan C. Shuros, Brian Soltis, Juan G. Hincapie, Qi An, Yinghong Yu, Keith R. Maile
  • Patent number: 11083372
    Abstract: A system includes an implantable medical device configured to sense a sync signal and sense physiological parameters to obtain a physiological signal. In response to sensing the sync signal, the implantable medical device is configured to generate a sync-stamped physiological signal. In certain embodiments, a method includes receiving a first physiological signal coupled with a sync signal; receiving a second physiological signal coupled with the sync signal; and, using the sync signal, synchronizing in time the first and second physiological signals.
    Type: Grant
    Filed: January 7, 2017
    Date of Patent: August 10, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh H. Thakur, David J. Ternes, Keith R. Maile, Zhe Shen, Stephen B. Ruble, Howard D. Simms, Paul F. Emerson
  • Patent number: 11026619
    Abstract: A cardiac rhythm management system includes at least one sensing component configured to obtain a first physiological parameter signal, an indication of a cardiac response to a stimulation therapy, and temporal information corresponding to the first physiological parameter signal and the cardiac response; and at least one processor configured to: receive the first physiological parameter signal, the indication of the cardiac response, and the temporal information; and to classify the cardiac response into a first cardiac response class to generate a classified cardiac response. The at least one processor also is configured to determine a correlation, based on the temporal information, between the first physiological parameter signal and the classified cardiac response.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: June 8, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Qi An, Pramodsingh H. Thakur, Keith R. Maile, Sunipa Saha
  • Patent number: 10993670
    Abstract: A mobile device, having a processor, includes an accelerometer configured to generate acceleration data, the acceleration data including a plurality of acceleration measurements. The mobile device also includes a memory having embodied thereon computer-executable instructions that are configured to, when executed by the processor, cause the processor to: obtain the acceleration data from the accelerometer; and generate, based on the acceleration data, heart sound data, the heart sound data including data associated with one or more heart sounds.
    Type: Grant
    Filed: September 15, 2018
    Date of Patent: May 4, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan B. Shute, Keith R. Maile, Rezwan Ahmed, Pramodsingh H. Thakur, Viktoria A. Averina, Qi An, John D. Hatlestad, Bin Mi
  • Patent number: 10850093
    Abstract: A system for lead integrity monitoring includes an implantable medical device (IMD) having a housing enclosing a control circuit; and a lead, having a first sensor. The lead is coupled to the housing and electrically coupled to the control circuit. The system also includes at least one processing device configured to identify a first lead failure alert based on a first set of information; obtain a second set of information generated by a second sensor; perform an evaluation of the first set of information in the context of the second set of information; and confirm or cancel the first lead failure alert based on the evaluation.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: December 1, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh H. Thakur, Deepa Mahajan, Qi An, Keith R. Maile, David J. Ternes, Zhe Shen
  • Patent number: 10827929
    Abstract: Embodiments of the disclosure include systems and methods for obtaining high-resolution data from implantable medical devices (IMDs) by triggering a limited-time system behavior change. For example, embodiments include utilizing study prescriptions for batching data obtained by an IMD, communicating the batched data to an external device, and reconstructing the batched data at the external device. Study prescriptions refer to sets of instructions, conditions, protocols, and/or the like, that specify one or more of an information gathering scheme and a communication scheme, and may be configured, for example, to obtain information at a resolution sufficient for performing a certain analysis (e.g., associated with a diagnostic model), while managing the resulting impact to device longevity and/or performance.
    Type: Grant
    Filed: January 7, 2017
    Date of Patent: November 10, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Zhe Shen, Stephen B. Ruble, Pramodsingh H. Thakur, Keith R. Maile
  • Publication number: 20200214576
    Abstract: Embodiments of the present disclosure relate to heart sound measurements using mobile devices. In an embodiment, a medical system for monitoring heart sounds of a subject comprises a medical device configured to obtain, during a first sampling interval, a first physiological signal. The medical system further comprises a mobile device comprising an accelerator, wherein the accelerator is configured to obtain, during a second sampling interval, a second physiological signal. And, the medical system comprises an analysis component configured to extract heart sounds data from the second physiological signal.
    Type: Application
    Filed: January 2, 2020
    Publication date: July 9, 2020
    Inventors: Jonathan B. Shute, Kyle H. Srivastava, Pramodsingh H. Thakur, Keith R. Maile
  • Patent number: 10631744
    Abstract: A system for monitoring a subject for an arrhythmia includes an external monitoring device (EMD) configured to be disposed outside of a subject's body. The EMD includes a first communication component configured to receive, from a medical device, a first physiological parameter signal and an indication of a detected trigger event associated with a first portion of the first physiological parameter signal. The trigger event is indicative of a potential arrhythmia. The EMD also includes an analysis component configured to (1) identify a second portion of the first physiological parameter signal, where the second portion satisfies a discard criterion, (2) discard the second portion, and (3) perform an arrhythmia confirmation evaluation using a third portion of the first physiological parameter signal.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 28, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, David L. Perschbacher, Pramodsingh H. Thakur
  • Patent number: 10583286
    Abstract: Aspects of the present disclosure are directed toward apparatuses, systems, and methods for delivering therapy to an adrenal gland of a patient. The apparatuses, systems, and methods may include a housing and a plurality of electrodes arranged with the housing. In addition, one or more of the plurality of electrodes may deliver stimulation energy to modulate L-dopa release.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: March 10, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Lynne E. Swanson, William C. Stoffregen, Bryan A. Clark, Michael X. Govea, Dennis B. Werner, Natalie A. Brill, Pramodsingh H. Thakur
  • Patent number: 10575900
    Abstract: A catheter system includes a catheter comprising a tip assembly, the tip assembly having a plurality of electrodes and the plurality of electrodes are configured to measure electrical signals. The system also includes a processing unit configured to: receive a first electrical signal sensed by a first electrode of the plurality of electrodes and a second electrical signal sensed by a second electrode of the plurality of electrodes. A first vector is determined based on the first electrical signal that corresponds to the first electrode. A second vector is determined based on the second electrical signal that corresponds to the second electrode. A resultant vector is determined by summing at least the first vector and the second vector, wherein the resultant vector is indicative of the orientation of the tip assembly.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Scimed Inc
    Inventors: Jacob I. Laughner, Jason J. Hamann, Shibaji Shome, Allan C. Shuros, Mary M. Byron, Paul Hultz, Pramodsingh H. Thakur
  • Patent number: 10555680
    Abstract: A method and system for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure, each of the plurality of mapping electrodes having an electrode location. A vector field map which represents a direction of propagation of the activation signals at each electrode location is generated to identify a signature pattern and a location in the vector field map according to at least one vector field template. A target location of the identified signature pattern is identified according to a corresponding electrode location.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: February 11, 2020
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shibaji Shome, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Barun Maskara, Sunipa Saha
  • Patent number: 10441788
    Abstract: Aspects of the present disclosure are directed toward apparatuses, systems, and methods for delivering therapy to an adrenal gland of a patient. The apparatuses, systems, and methods may include a lead body that attaches to a portion of the adrenal gland of the patient; and a plurality of electrodes arranged along the lead body. In addition, one or more of the plurality of electrodes may deliver stimulation energy to modulate catecholamine release from chromaffin cells within the adrenal gland.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Lynne E. Swanson, William C. Stoffregen, Bryan A. Clark, Michael X. Govea, Dennis B. Werner, Natalie A. Brill, Pramodsingh H. Thakur
  • Patent number: 10368767
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a system for mapping the electrical activity of the heart. The system may include a catheter shaft with a plurality of electrodes. The system may also include a processor. The processor may be capable of collecting a set of signals from at least one of the plurality of electrodes. The set of signals may be collected over a time period. The processor may also be capable of calculating at least one propagation vector from the set of signals, generating a data set from the at least one propagation vector, generating a statistical distribution of the data set and generating a visual representation of the statistical distribution.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: August 6, 2019
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Jacob I. Laughner, Shibaji Shome, Paul Hultz, Kevin J. Stalsberg, Pramodsingh H. Thakur
  • Publication number: 20190223839
    Abstract: Embodiments of the present disclosure relate to imaging a body part using sounds. In embodiments, a system comprises a motion sensor and a processing device communicatively coupled to the motion sensor. The motion sensor is configured to sense an acceleration wave produced by a sound emitted by a source and generate acceleration measurements in response to sensing the acceleration wave, wherein the source is associated with the body part of a subject. The processing device is configured to receive the acceleration measurements and determine a location of the source using a location of the motion sensor and the acceleration measurements. In addition, the processing device is configured to image the body part of the subject using the determined location of the source and the acceleration measurements.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 25, 2019
    Inventors: Jonathan B. Shute, Pramodsingh H. Thakur, Bin Mi, Brian A. Clark, Qi An, Ramesh Wariar, Krzysztof Z. Siejko
  • Publication number: 20190217097
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for pacing a HIS bundle of a patient. The apparatuses, systems, and methods may include applying stimulation energy through one or more of a plurality of electrodes to direct a stimulation locus and pace a HIS bundle of a patient.
    Type: Application
    Filed: January 17, 2019
    Publication date: July 18, 2019
    Inventors: Pramodsingh H. Thakur, Allan C. Shuros, Brian Soltis, Juan G. Hincapie, Qi An, Yinghong Yu, Keith R. Maile
  • Patent number: 10264985
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example system for mapping the electrical activity of the heart includes a catheter shaft. The catheter shaft includes a plurality of electrodes including a first and a second electrode. The system also includes a processor. The processor is capable of collecting a first signal corresponding to a first electrode over a time period and generating a first time-frequency distribution corresponding to the first signal. The first time-frequency distribution includes a first dominant frequency value representation occurring at one or more first base frequencies. The processor is also capable of applying a filter to the first signal or derivatives thereof to determine whether the first dominant frequency value representation includes a single first dominant frequency value at a first base frequency or two or more first dominant frequency values at two or more base frequencies.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 23, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jacob I. Laughner, Carlos Alberto Ricci, Vladimir V. Kovtun, Shibaji Shome, Pramodsingh H. Thakur, Allan C. Shuros, Kevin J. Stalsberg