Patents by Inventor Pramodsingh H. Thakur

Pramodsingh H. Thakur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9730603
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a system for mapping the electrical activity of the heart. The system may include a catheter shaft with a plurality of electrodes. The system may also include a processor. The processor may be capable of collecting a set of signals from at least one of the plurality of electrodes. The set of signals may be collected over a time period. The processor may also be capable of calculating at least one propagation vector from the set of signals, generating a data set from the at least one propagation vector, generating a statistical distribution of the data set and generating a visual representation of the statistical distribution.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 15, 2017
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Jacob I. Laughner, Shibaji Shome, Paul Hultz, Kevin J. Stalsberg, Pramodsingh H. Thakur
  • Publication number: 20170196457
    Abstract: A system includes an implantable medical device configured to sense a sync signal and sense physiological parameters to obtain a physiological signal. In response to sensing the sync signal, the implantable medical device is configured to generate a sync-stamped physiological signal. In certain embodiments, a method includes receiving a first physiological signal coupled with a sync signal; receiving a second physiological signal coupled with the sync signal; and, using the sync signal, synchronizing in time the first and second physiological signals.
    Type: Application
    Filed: January 7, 2017
    Publication date: July 13, 2017
    Inventors: Pramodsingh H. Thakur, David J. Ternes, Keith R. Maile, Zhe Shen, Stephen B. Ruble, Howard D. Simms, Paul F. Emerson
  • Publication number: 20170196458
    Abstract: Embodiments of the disclosure include systems and methods for obtaining high-resolution data from implantable medical devices (IMDs) by triggering a limited-time system behavior change. For example, embodiments include utilizing study prescriptions for batching data obtained by an IMD, communicating the batched data to an external device, and reconstructing the batched data at the external device. Study prescriptions refer to sets of instructions, conditions, protocols, and/or the like, that specify one or more of an information gathering scheme and a communication scheme, and may be configured, for example, to obtain information at a resolution sufficient for performing a certain analysis (e.g., associated with a diagnostic model), while managing the resulting impact to device longevity and/or performance.
    Type: Application
    Filed: January 7, 2017
    Publication date: July 13, 2017
    Inventors: David J. Ternes, Zhe Shen, Stephen B. Ruble, Pramodsingh H. Thakur, Keith R. Maile
  • Patent number: 9681817
    Abstract: A method for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the anatomical structure, identifying at least one of the electrodes not in direct contact with the anatomical structure, and adjusting the activation signals sensed by each of the plurality of electrodes based on the activation signals sensed by the identified at least one of the electrodes not in direct contact with the anatomical structure.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: June 20, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Barun Maskara, Shantha Arcot-Krishnamurthy, Pramodsingh H. Thakur, Allan C. Shuros, Sunipa Saha, Shibaji Shome
  • Publication number: 20170143415
    Abstract: A catheter system includes a catheter comprising a tip assembly, the tip assembly having a plurality of electrodes and the plurality of electrodes are configured to measure electrical signals. The system also includes a processing unit configured to: receive a first electrical signal sensed by a first electrode of the plurality of electrodes and a second electrical signal sensed by a second electrode of the plurality of electrodes. A first vector is determined based on the first electrical signal that corresponds to the first electrode. A second vector is determined based on the second electrical signal that corresponds to the second electrode. A resultant vector is determined by summing at least the first vector and the second vector, wherein the resultant vector is indicative of the orientation of the tip assembly.
    Type: Application
    Filed: November 18, 2016
    Publication date: May 25, 2017
    Inventors: Jacob I. Laughner, Jason J. Hamann, Shibaji Shome, Allan C. Shuros, Mary M. Byron, Paul Hultz, Pramodsingh H. Thakur
  • Patent number: 9649040
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example system for mapping the electrical activity of the heart includes a catheter shaft. The catheter shaft includes a plurality of electrodes including a first electrode and a second electrode. The system also includes a processor. The processor is capable of collecting a first signal corresponding to the first electrode and a second signal corresponding to the second electrode. Collecting the first and second signals occurs over a time period. The processor is also capable of generating a first time-frequency distribution corresponding to the first signal, identifying a first dominant frequency value occurring at a first dominant frequency and a first time point, generating a second time-frequency distribution corresponding to the second signal, identifying a second dominant frequency value occurring at a second dominant frequency and a second time point and determining an attraction point.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: May 16, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jacob I. Laughner, Carlos Alberto Ricci, Vladimir V. Kovtun, Shibaji Shome, Pramodsingh H. Thakur, Allan C. Shuros, Kevin J. Stalsberg
  • Patent number: 9636032
    Abstract: A system and method for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the anatomical structure. A most recent intrinsic event at a selected time is determined based on the sensed activation signals and a persistent display of relevant characteristics is generated based on the sensed activation signals of the most recent intrinsic event. The persistent display is updated upon detection of a subsequent intrinsic event.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: May 2, 2017
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Sunipa Saha, Shibaji Shome, Barun Maskara
  • Publication number: 20170112450
    Abstract: Medical devices and methods for making and using medical devices are disclosed. A method for removing an artifact of a biological reference signal present in a biological source signal may comprise sensing a biological reference signal with one or more electrodes and sensing a biological source signal, wherein the biological source signal comprises an artifact of the biological reference signal. The method may further comprise determining, based on the biological reference signal, the artifact of the biological reference signal and subtracting the artifact of the biological reference signal from the sensed biological source signal.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Inventors: Vladimir V. Kovtun, Carlos A. Ricci, Pramodsingh H. Thakur, Shibaji Shome
  • Patent number: 9579034
    Abstract: An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 28, 2017
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Shibaji Shome, Barun Maskara, Sunipa Saha
  • Patent number: 9517017
    Abstract: An anatomical mapping system includes a plurality of mapping electrodes, a plurality of mechanical sensors, and a mapping processor associated with the plurality of mapping electrodes and mechanical sensors. The mapping electrodes are configured to detect electrical activation signals of intrinsic physiological activity within an anatomical structure. The mechanical sensors are configured to detect mechanical activity associated with the intrinsic physiological activity. The mapping processor is configured to record the detected activation signals and associate one of the plurality of mapping electrodes and mechanical sensors with each recorded activation signal. The mapping processor is further configured to determine activation times of the intrinsic physiological activity based on a correlation of corresponding electrical activation signals and mechanical activity.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: December 13, 2016
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Allan C. Shuros, Pramodsingh H. Thakur, Sunipa Saha, Barun Maskara, Shibaji Shome
  • Publication number: 20160345853
    Abstract: A method for mapping a cardiac chamber includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the cardiac chamber, the activation signals including a near-field activation signal component and a far-field activation signal component, isolating R-wave events in the activation signals, generating a far-field activation template representative of the far-field activation signal component based on the R-wave events, and filtering the far-field activation template from the activation signals to identify the near-field activation signal components in the activation signals.
    Type: Application
    Filed: August 9, 2016
    Publication date: December 1, 2016
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha, Allan C. Shuros, Shibaji Shome
  • Publication number: 20160345852
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example method may include a method of identifying an activation time in a cardiac electrical signal. The method may include sensing a cardiac electrical signal, generating an approximation signal based at least in part on one or more parameters of the cardiac electrical signal, identifying a fiducial point on the approximation signal and determining, based at least in part on a timing of the fiducial point in the approximation signal, an activation time in the cardiac electrical signal.
    Type: Application
    Filed: August 8, 2016
    Publication date: December 1, 2016
    Inventors: Jacob I. Laughner, Paul Hultz, Shibaji Shome, Pramodsingh H. Thakur, Scott A. Meyer
  • Publication number: 20160331267
    Abstract: A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on a signal parameter of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: Barun Maskara, Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Shibaji Shome, Sunipa Saha, Allan C. Shuros, Scott A. Meyer
  • Patent number: 9439578
    Abstract: A method for mapping a cardiac chamber includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the cardiac chamber, the activation signals including a near-field activation signal component and a far-field activation signal component, isolating R-wave events in the activation signals, generating a far-field activation template representative of the far-field activation signal component based on the R-wave events, and filtering the far-field activation template from the activation signals to identify the near-field activation signal components in the activation signals.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 13, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha, Allan C. Shuros, Shibaji Shome
  • Patent number: 9427167
    Abstract: A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on amplitudes of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 30, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Barun Maskara, Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Shibaji Shome, Sunipa Saha, Allan C. Shuros, Scott A. Meyer
  • Publication number: 20160183810
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example system for mapping the electrical activity of the heart includes a catheter shaft. The catheter shaft includes a plurality of electrodes including a first and a second electrode. The system also includes a processor. The processor is capable of collecting a first signal corresponding to a first electrode over a time period and generating a first time-frequency distribution corresponding to the first signal. The first time-frequency distribution includes a first dominant frequency value representation occurring at one or more first base frequencies. The processor is also capable of applying a filter to the first signal or derivatives thereof to determine whether the first dominant frequency value representation includes a single first dominant frequency value at a first base frequency or two or more first dominant frequency values at two or more base frequencies.
    Type: Application
    Filed: October 2, 2015
    Publication date: June 30, 2016
    Inventors: Jacob I. Laughner, Carlos Alberto Ricci, Vladimir V. Kovtun, Shibaji Shome, Pramodsingh H. Thakur, Allan C. Shuros, Kevin J. Stalsberg
  • Publication number: 20160183809
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example system for mapping the electrical activity of the heart includes a catheter shaft. The catheter shaft includes a plurality of electrodes including a first electrode and a second electrode. The system also includes a processor. The processor is capable of collecting a first signal corresponding to the first electrode and a second signal corresponding to the second electrode. Collecting the first and second signals occurs over a time period. The processor is also capable of generating a first time-frequency distribution corresponding to the first signal, identifying a first dominant frequency value occurring at a first dominant frequency and a first time point, generating a second time-frequency distribution corresponding to the second signal, identifying a second dominant frequency value occurring at a second dominant frequency and a second time point and determining an attraction point.
    Type: Application
    Filed: October 2, 2015
    Publication date: June 30, 2016
    Inventors: Jacob I. Laughner, Carlos Alberto Ricci, Vladimir V. Kovtun, Shibaji Shome, Pramodsingh H. Thakur, Allan C. Shuros, Kevin J. Stalsberg
  • Publication number: 20160183830
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example system for mapping the electrical activity of the heart includes a processor. The processor is capable of sensing a plurality of signals with a plurality of electrodes positioned within the heart and collecting a plurality of signals corresponding to the plurality of electrodes. Collecting the plurality of signals occurs over a time period.
    Type: Application
    Filed: October 2, 2015
    Publication date: June 30, 2016
    Inventors: Jacob I. Laughner, Shibaji Shome, Pramodsingh H. Thakur, Kevin J. Stalsberg
  • Patent number: 9332920
    Abstract: An anatomical mapping system includes a plurality of mapping electrodes each having an electrode location and configured to detect activation signals of intrinsic physiological activity within an anatomical structure. A mapping processor is associated with the plurality of mapping electrodes and is configured to record the detected activation signals and associate one of the plurality of mapping electrodes with each recorded activation signal. The mapping processor is further configured to analyze the recorded activation signals to identify at least one recurring pattern based on a relationship between a timing of the detected activation signals and the electrode locations of the mapping electrode associated with each detected activation signal.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 10, 2016
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Barun Maskara, Shantha Arcot-Krishnamurthy, Sunipa Saha, Shibaji Shome
  • Publication number: 20160089050
    Abstract: An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 31, 2016
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Shibaji Shome, Barun Maskara, Sunipa Saha