Patents by Inventor Pranita Kerber

Pranita Kerber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10957780
    Abstract: A U-shaped gate dielectric structure is provided that has a horizontal gate dielectric portion having a vertical thickness, and a vertical gate dielectric wall portion extending upwards from the horizontal gate dielectric portion. The vertical gate dielectric wall portion has a lateral thickness that is greater than the vertical thickness of the horizontal gate dielectric portion. The U-shaped gate dielectric structure houses a gate conductor portion. Collectively, the U-shaped gate dielectric structure and the gate conductor portion provide a functional gate structure that has reduced capacitance.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Pranita Kerber, Effendi Leobandung, Philip J. Oldiges
  • Patent number: 10937871
    Abstract: A semiconductor device comprises a first layer of a substrate arranged on a second layer of the substrate the second layer of the substrate including a doped III-V semiconductor material barrier layer, a gate stack arranged on a channel region of the first layer of a substrate, a spacer arranged adjacent to the gate stack on the first layer of the substrate, an undoped epitaxially grown III-V semiconductor material region arranged on the second layer of the substrate, and an epitaxially grown source/drain region arranged on the undoped epitaxially grown III-V semiconductor material region, and a portion of the first layer of the substrate.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: March 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Amlan Majumdar, Yanning Sun
  • Patent number: 10680085
    Abstract: Aspects of the present disclosure include finFET structures with varied cross-sectional areas and methods of forming the same. Methods according to the present disclosure can include, e.g., forming a structure including: a semiconductor fin positioned on a substrate, wherein the semiconductor fin includes: a gate area, and a terminal area laterally distal to the gate area, a sacrificial gate positioned on the gate area of the semiconductor fin, and an insulator positioned on the terminal area of the semiconductor fin; removing the sacrificial gate to expose the gate area of the semiconductor fin; increasing or reducing a cross-sectional area of the gate area of the semiconductor fin; and forming a transistor gate on the gate area of the semiconductor fin.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: June 9, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Dominic J. Schepis, Alexander Reznicek, Pranita Kerber, Qiqing C. Ouyang
  • Patent number: 10643907
    Abstract: A method of making a semiconductor device includes forming a first silicon germanium layer on a substrate, the first silicon germanium layer forming a portion of a first transistor; forming a second silicon germanium layer on the substrate adjacent to the first silicon germanium layer, the second silicon germanium layer forming a portion of a second transistor and having a germanium content that is different than the first silicon germanium layer and a thickness that is substantially the same; growing by an epitaxial process a compressively strained silicon germanium layer on the first silicon germanium layer, and a tensile strained silicon germanium layer on the second silicon germanium layer; patterning a first fin in the compressively strained silicon germanium layer and the first silicon germanium layer; and patterning a second fin in the tensile strained silicon germanium layer and the second silicon germanium layer.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: May 5, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek, Dominic J. Schepis
  • Patent number: 10374042
    Abstract: A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: August 6, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jie Deng, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Publication number: 20190198640
    Abstract: A U-shaped gate dielectric structure is provided that has a horizontal gate dielectric portion having a vertical thickness, and a vertical gate dielectric wall portion extending upwards from the horizontal gate dielectric portion. The vertical gate dielectric wall portion has a lateral thickness that is greater than the vertical thickness of the horizontal gate dielectric portion. The U-shaped gate dielectric structure houses a gate conductor portion. Collectively, the U-shaped gate dielectric structure and the gate conductor portion provide a functional gate structure that has reduced capacitance.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Pranita Kerber, Effendi Leobandung, Philip J. Oldiges
  • Publication number: 20190157167
    Abstract: A method of making a semiconductor device includes forming a first silicon germanium layer on a substrate, the first silicon germanium layer forming a portion of a first transistor; forming a second silicon germanium layer on the substrate adjacent to the first silicon germanium layer, the second silicon germanium layer forming a portion of a second transistor and having a germanium content that is different than the first silicon germanium layer and a thickness that is substantially the same; growing by an epitaxial process a compressively strained silicon germanium layer on the first silicon germanium layer, and a tensile strained silicon germanium layer on the second silicon germanium layer; patterning a first fin in the compressively strained silicon germanium layer and the first silicon germanium layer; and patterning a second fin in the tensile strained silicon germanium layer and the second silicon germanium layer.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 23, 2019
    Inventors: Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek, Dominic J. Schepis
  • Patent number: 10262999
    Abstract: An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Martin M. Frank, Pranita Kerber, Vijay Narayanan
  • Patent number: 10256319
    Abstract: A U-shaped gate dielectric structure is provided that has a horizontal gate dielectric portion having a vertical thickness, and a vertical gate dielectric wall portion extending upwards from the horizontal gate dielectric portion. The vertical gate dielectric wall portion has a lateral thickness that is greater than the vertical thickness of the horizontal gate dielectric portion. The U-shaped gate dielectric structure houses a gate conductor portion. Collectively, the U-shaped gate dielectric structure and the gate conductor portion provide a functional gate structure that has reduced capacitance.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: April 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Pranita Kerber, Effendi Leobandung, Philip J. Oldiges
  • Patent number: 10217745
    Abstract: An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: February 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Martin M. Frank, Pranita Kerber, Vijay Narayanan
  • Patent number: 10204837
    Abstract: A method of making a semiconductor device includes forming a first silicon germanium layer on a substrate, the first silicon germanium layer forming a portion of a first transistor; forming a second silicon germanium layer on the substrate adjacent to the first silicon germanium layer, the second silicon germanium layer forming a portion of a second transistor and having a germanium content that is different than the first silicon germanium layer and a thickness that is substantially the same; growing by an epitaxial process a compressively strained silicon germanium layer on the first silicon germanium layer, and a tensile strained silicon germanium layer on the second silicon germanium layer; patterning a first fin in the compressively strained silicon germanium layer and the first silicon germanium layer; and patterning a second fin in the tensile strained silicon germanium layer and the second silicon germanium layer.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: February 12, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek, Dominic J. Schepis
  • Patent number: 10192888
    Abstract: FinFET devices are provided wherein the current path is minimized and mostly limited to spacer regions before the channel carriers reach the metal contacts. The fins in the source/drain regions are metallized to increase the contact area and reduce contact resistance. Selective removal of semiconductor fins in the source/drain regions following source/drain epitaxy facilitates replacement thereof by the metallized fins. A spacer formed subsequent to source/drain epitaxy prevents the etching of extension/channel regions during semiconductor fin removal.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: January 29, 2019
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Pranita Kerber, Alexander Reznicek, Joshua M. Rubin
  • Patent number: 10176990
    Abstract: A semiconductor device and a method for fabricating the device. The method includes: providing a FinFET having a source/drain region, at least one SiGe fin, a silicon substrate, a local oxide layer is formed on the silicon substrate, a gate structure is formed on the at least one SiGe fin and the local oxide layer, the gate structure is encapsulated by a gate hard mask and sidewall spacer layers; recessing the at least one SiGe fin in the source/drain region to the sidewall spacer layers and the silicon substrate layer; recessing the local oxide layer in the source/drain region to the sidewall spacer layer and the silicon substrate; growing a n-doped silicon layer on the silicon substrate; growing a p-doped silicon layer or p-doped SiGe layer on the n-doped silicon layer; and forming a silicide layer on the p-doped silicon layer or p-doped SiGe layer.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: January 8, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Publication number: 20180240799
    Abstract: An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Takashi Ando, Martin M. Frank, Pranita Kerber, Vijay Narayanan
  • Publication number: 20180233418
    Abstract: A method of making a semiconductor device includes forming a first silicon germanium layer on a substrate, the first silicon germanium layer forming a portion of a first transistor; forming a second silicon germanium layer on the substrate adjacent to the first silicon germanium layer, the second silicon germanium layer forming a portion of a second transistor and having a germanium content that is different than the first silicon germanium layer and a thickness that is substantially the same; growing by an epitaxial process a compressively strained silicon germanium layer on the first silicon germanium layer, and a tensile strained silicon germanium layer on the second silicon germanium layer; patterning a first fin in the compressively strained silicon germanium layer and the first silicon germanium layer; and patterning a second fin in the tensile strained silicon germanium layer and the second silicon germanium layer.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek, Dominic J. Schepis
  • Publication number: 20180190797
    Abstract: Aspects of the present disclosure include finFET structures with varied cross-sectional areas and methods of forming the same. Methods according to the present disclosure can include, e.g., forming a structure including: a semiconductor fin positioned on a substrate, wherein the semiconductor fin includes: a gate area, and a terminal area laterally distal to the gate area, a sacrificial gate positioned on the gate area of the semiconductor fin, and an insulator positioned on the terminal area of the semiconductor fin; removing the sacrificial gate to expose the gate area of the semiconductor fin; increasing or reducing a cross-sectional area of the gate area of the semiconductor fin; and forming a transistor gate on the gate area of the semiconductor fin.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 5, 2018
    Inventors: Dominic J. Schepis, Alexander Reznicek, Pranita Kerber, Qiqing C. Ouyang
  • Patent number: 10002871
    Abstract: An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Martin M. Frank, Pranita Kerber, Vijay Narayanan
  • Patent number: 10002798
    Abstract: A method of making a semiconductor device includes forming a first silicon germanium layer on a substrate, the first silicon germanium layer forming a portion of a first transistor; forming a second silicon germanium layer on the substrate adjacent to the first silicon germanium layer, the second silicon germanium layer forming a portion of a second transistor and having a germanium content that is different than the first silicon germanium layer and a thickness that is substantially the same; growing by an epitaxial process a compressively strained silicon germanium layer on the first silicon germanium layer, and a tensile strained silicon germanium layer on the second silicon germanium layer; patterning a first fin in the compressively strained silicon germanium layer and the first silicon germanium layer; and patterning a second fin in the tensile strained silicon germanium layer and the second silicon germanium layer.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 19, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek, Dominic J. Schepis
  • Publication number: 20180151674
    Abstract: A semiconductor device comprises a first layer of a substrate arranged on a second layer of the substrate the second layer of the substrate including a doped 111-V semiconductor material barrier layer, a gate stack arranged on a channel region of the first layer of a substrate, a spacer arranged adjacent to the gate stack on the first layer of the substrate, an undoped epitaxially grown III-V semiconductor material region arranged on the second layer of the substrate, and an epitaxially grown source/drain region arranged on the undoped epitaxially grown III-V semiconductor material region, and a portion of the first layer of the substrate.
    Type: Application
    Filed: January 31, 2018
    Publication date: May 31, 2018
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Amlan Majumdar, Yanning Sun
  • Patent number: 9972711
    Abstract: A metal-oxide-semiconductor field effect transistor (MOSFET) and a method of fabricating a MOSFET are described. The method includes depositing and patterning a dummy gate stack above an active channel layer formed on a base. The method also includes selectively etching the active channel layer leaving a remaining active channel layer, and epitaxially growing silicon doped active channel material adjacent to the remaining active channel layer.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: May 15, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek