Patents by Inventor Pranita Kerber

Pranita Kerber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9640552
    Abstract: Semiconductor fins are formed on a top surface of a substrate. A dielectric material is deposited on the top surfaces of the semiconductor fins and the substrate by an anisotropic deposition. A dielectric material layer on the top surface of the substrate is patterned so that the remaining portion of the dielectric material layer laterally surrounds each bottom portion of at least one semiconductor fin, while not contacting at least one second semiconductor fin. Dielectric material portions on the top surfaces of the semiconductor fins may be optionally removed. Each first semiconductor fin has a lesser channel height than the at least one second semiconductor fin. The first and second semiconductor fins can be employed to provide fin field effect transistors having different channel heights.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Pranita Kerber, Carl J. Radens, Sudesh Saroop
  • Publication number: 20170117413
    Abstract: A semiconductor structure includes a first fin structure having a first strain located on a surface of a first insulator layer portion. The first fin structure includes a first doped silicon germanium alloy fin portion having a first germanium content and a silicon germanium alloy fin portion having a third germanium content. A second fin structure having a second strain is located on a surface of a second insulator layer portion. The second fin structure includes a second doped silicon germanium alloy fin portion having a second germanium content and a silicon germanium alloy fin portion having the third germanium content, wherein the first germanium content differs from the second germanium content and the third germanium content is greater than the first and second germanium contents, and wherein the first strain differs from the second strain.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 27, 2017
    Inventors: Pouya Hashemi, Pranita Kerber, Christine Q. Ouyang, Alexander Reznicek
  • Patent number: 9634028
    Abstract: FinFET devices are provided wherein the current path is minimized and mostly limited to spacer regions before the channel carriers reach the metal contacts. The fins in the source/drain regions are metallized to increase the contact area and reduce contact resistance. Selective removal of semiconductor fins in the source/drain regions following source/drain epitaxy facilitates replacement thereof by the metallized fins. A spacer formed subsequent to source/drain epitaxy prevents the etching of extension/channel regions during semiconductor fin removal.
    Type: Grant
    Filed: October 31, 2015
    Date of Patent: April 25, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Pranita Kerber, Alexander Reznicek, Joshua M. Rubin
  • Patent number: 9627482
    Abstract: A method for fabricating a semiconductor device may include receiving a gated substrate comprising a substrate with a channel layer and a gate structure formed thereon, over-etching the channel layer to expose an extension region below the gate structure, epitaxially growing a halo layer on the exposed extension region using a first in-situ dopant and epitaxially growing a source or drain on the halo layer using a second in-situ dopant, wherein the first in-situ dopant and the second in-situ dopant are of opposite doping polarity. Using an opposite doping polarity may provide an energy band barrier for the semiconductor device and reduce leakage current. A corresponding apparatus is also disclosed herein.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: April 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Young-Hee Kim, Effendi Leobandung, Yanning Sun
  • Patent number: 9627410
    Abstract: FinFET devices are provided wherein the current path is minimized and mostly limited to spacer regions before the channel carriers reach the metal contacts. The fins in the source/drain regions are metallized to increase the contact area and reduce contact resistance. Selective removal of semiconductor fins in the source/drain regions following source/drain epitaxy facilitates replacement thereof by the metallized fins. A spacer formed subsequent to source/drain epitaxy prevents the etching of extension/channel regions during semiconductor fin removal.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Pranita Kerber, Alexander Reznicek, Joshua M. Rubin
  • Publication number: 20170098646
    Abstract: A device having an electrostatic discharge structure includes a bulk substrate having a first dopant conductivity, first wells formed adjacent to a surface of the bulk substrate, including a second dopant conductivity, and second wells formed adjacent to the surface of the bulk substrate within the first wells, including the first dopant conductivity. A supply bus is formed in one of the first wells outside the second well. A ground bus has a first portion formed in another first well outside the second well, and a second portion is formed inside the second well such that a charge input to the second wells is dissipated without accumulating in the bulk substrate.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 6, 2017
    Inventors: Kangguo Cheng, Bruce B. Doris, Terence B. Hook, Ali Khakifirooz, Pranita Kerber, Balasubramanian Pranatharthiharan, Ghavam G. Shahidi
  • Publication number: 20170092763
    Abstract: A semiconductor structure containing a high mobility semiconductor channel material, i.e., a III-V semiconductor material, and asymmetrical source/drain regions located on the sidewalls of the high mobility semiconductor channel material is provided. The asymmetrical source/drain regions can aid in improving performance of the resultant device. The source region contains a source-side epitaxial doped semiconductor material, while the drain region contains a drain-side epitaxial doped semiconductor material and an underlying portion of the high mobility semiconductor channel material.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Effendi Leobandung, Amlan Majumdar, Renee T. Mo, Yanning Sun
  • Publication number: 20170077249
    Abstract: A method of forming a semiconductor device that includes forming a fin structure from a semiconductor substrate, and forming a gate structure on a channel region portion of the fin structure. A source region and a drain region are formed on a source region portion and a drain region portion of the fin structure on opposing sides of the channel portion of the fin structure. At least one sidewall of the source region portion and the drain region portion of the fin structure is exposed. A metal semiconductor alloy is formed on the at least one sidewall of the source region portion and the drain region portion of the fin structure that is exposed.
    Type: Application
    Filed: November 23, 2016
    Publication date: March 16, 2017
    Inventors: Keith E. Fogel, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Patent number: 9595598
    Abstract: A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: March 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jie Deng, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Publication number: 20170069718
    Abstract: A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Inventors: Jie Deng, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Patent number: 9590106
    Abstract: A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jie Deng, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Publication number: 20170062602
    Abstract: A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
    Type: Application
    Filed: March 2, 2016
    Publication date: March 2, 2017
    Inventors: Jie Deng, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Publication number: 20170062589
    Abstract: A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 2, 2017
    Inventors: Jie Deng, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Publication number: 20170062570
    Abstract: A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 2, 2017
    Inventors: Jie Deng, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Publication number: 20170053915
    Abstract: An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
    Type: Application
    Filed: August 17, 2015
    Publication date: February 23, 2017
    Inventors: Takashi Ando, Martin M. Frank, Pranita Kerber, Vijay Narayanan
  • Patent number: 9576806
    Abstract: A method of forming a semiconductor device that includes forming a fin structure from a semiconductor substrate, and forming a gate structure on a channel region portion of the fin structure. A source region and a drain region are formed on a source region portion and a drain region portion of the fin structure on opposing sides of the channel portion of the fin structure. At least one sidewall of the source region portion and the drain region portion of the fin structure is exposed. A metal semiconductor alloy is formed on the at least one sidewall of the source region portion and the drain region portion of the fin structure that is exposed.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek
  • Patent number: 9576085
    Abstract: Selective importance sampling includes: first phase importance sampling of a plurality of data points to form a first subset of data points; determining a center of gravity of the first subset; determining, based upon the center of gravity, an orthogonal hyperplane; and a second phase importance sampling comprising: determining, for each point in the first subset, whether each point is above the hyperplane; and forming a second subset of data points, wherein the second subset is a subset of the first subset and wherein the second subset excludes each point of the first subset that has been determined to be above the hyperplane. The second subset also excludes all points within an ellipse below the hyperplane. Critical radial distances are determined from binary search or projection of first phase samples onto center of gravity direction as well as the maximal radius of the first subset around the center of gravity.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: February 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rajiv V. Joshi, Rouwaida N. Kanj, Pranita Kerber
  • Patent number: 9553166
    Abstract: A semiconductor structure containing a high mobility semiconductor channel material, i.e., a III-V semiconductor material, and asymmetrical source/drain regions located on the sidewalls of the high mobility semiconductor channel material is provided. The asymmetrical source/drain regions can aid in improving performance of the resultant device. The source region contains a source-side epitaxial doped semiconductor material, while the drain region contains a drain-side epitaxial doped semiconductor material and an underlying portion of the high mobility semiconductor channel material.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: January 24, 2017
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Effendi Leobandung, Amlan Majumdar, Renee T. Mo, Yanning Sun
  • Patent number: 9548356
    Abstract: Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: January 17, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Bruce B. Doris, Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Pranita Kerber, Arvind Kumar, Shom Ponoth
  • Patent number: 9530699
    Abstract: A semiconductor device includes at least one first semiconductor fin formed on an nFET region of a semiconductor device and at least one second semiconductor fin formed on a pFET region. The at least one first semiconductor fin has an nFET channel region interposed between a pair of nFET source/drain regions. The at least one second semiconductor fin has a pFET channel region interposed between a pair of pFET source/drain regions. The an epitaxial liner is formed on only the pFET channel region of the at least one second semiconductor fin such that a first threshold voltage of the nFET channel region is different than a second threshold voltage of the pFET channel.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 27, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kerber, Qiqing C. Ouyang, Alexander Reznicek