Patents by Inventor Prantik Mazumder

Prantik Mazumder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160176162
    Abstract: Described herein are methods for improved transfer of graphene from formation substrates to target substrates. In particular, the methods described herein are useful in the transfer of high-quality chemical vapor deposition-grown monolayers of graphene from metal, e.g., copper, formation substrates via non-polymeric methods. The improved processes provide graphene materials with less defects in the structure.
    Type: Application
    Filed: December 14, 2015
    Publication date: June 23, 2016
    Inventors: Benedict Yorke Johnson, Prantik Mazumder, Kamal Kishore Soni
  • Publication number: 20160176755
    Abstract: Described herein are methods for improved transfer of graphene from formation substrates to target substrates. In particular, the methods described herein are useful in the transfer of high-quality chemical vapor deposition-grown monolayers of graphene from metal, e.g., copper, formation substrates to ultrathin, flexible glass targets. The improved processes provide graphene materials with less defects in the structure.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 23, 2016
    Inventors: Benedict Yorke Johnson, Xinyuan Liu, Prantik Mazumder, Kamal Kishore Soni
  • Publication number: 20160158798
    Abstract: Described herein are improved dewetting methods and improved patterned articles produced using such methods. The improved methods and articles generally implement continuous ultra-thin metal-containing films or film stacks as the materials to be dewetted. For example, a method can involve the steps of providing a substrate that has a continuous ultra-thin metal-containing film or film stack disposed on a surface thereof, and dewetting at least a portion of the continuous ultra-thin metal-containing film or film stack to produce a plurality of discrete metal-containing dewetted islands on the surface of the substrate.
    Type: Application
    Filed: February 16, 2016
    Publication date: June 9, 2016
    Inventors: David Eugene Baker, Carme Gomez Carbonell, David Francis Dawson-Elli, Prantik Mazumder, Valerio Pruneri, Lili Tian
  • Patent number: 9340443
    Abstract: Surface modification layers and associated heat treatments, that may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: May 17, 2016
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder, Theresa Chang, Jeffrey John Domey, Alan Thomas Stephens, II
  • Patent number: 9296183
    Abstract: Described herein are improved dewetting methods and improved patterned articles produced using such methods. The improved methods and articles generally implement continuous ultra-thin metal-containing films or film stacks as the materials to be dewetted. For example, a method can involve the steps of providing a substrate that has a continuous ultra-thin metal-containing film or film stack disposed on a surface thereof, and dewetting at least a portion of the continuous ultra-thin metal-containing film or film stack to produce a plurality of discrete metal-containing dewetted islands on the surface of the substrate.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: March 29, 2016
    Assignee: Corning Incorporated
    Inventors: David Eugene Baker, Carme Gomez Carbonell, David Francis Dawson-Elli, Prantik Mazumder, Valerio Pruneri, Lili Tian
  • Patent number: 9238594
    Abstract: A method of forming a templated casting involves incorporating a liquid feedstock into the channels of a honeycomb substrate to form a feedstock-laden substrate, and directionally solidifying the liquid feedstock within the channels.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 19, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Prantik Mazumder, Frederick Ernest Noll, John Forrest Wright, Jr.
  • Publication number: 20160002096
    Abstract: Provided herein are methods for forming one or more silicon nanostructures, such as silicon nanotubes, and a silica-containing glass substrate. As a result of the process used to prepare the silicon nanostructures, the silica-containing glass substrate comprises one or more nanopillars and the one or more silicon nanostructures extend from the nanopillars of the silica-containing glass substrate. The silicon nanostructures include nanotubes and optionally nanowires. A further aspect is a method for preparing silicon nanostructures on a silica-containing glass substrate. The method includes providing one or more metal nanoparticles on a silica-containing glass substrate and then performing reactive ion etching of the silica-containing glass substrate under conditions that are suitable for the formation of one or more silicon nanostructures.
    Type: Application
    Filed: June 25, 2015
    Publication date: January 7, 2016
    Inventors: Albert Carrilero, Prantik Mazumder, Valerio Pruneri
  • Publication number: 20150367270
    Abstract: An air filter article, including: a wall-flow honeycomb particulate filter; and at least one anti-microbial agent on at least a portion of the interior surfaces. The disclosure also provides a filtration system that incorporates or uses the air filter article, and methods for making the air filter article.
    Type: Application
    Filed: May 14, 2015
    Publication date: December 24, 2015
    Inventors: Prantik Mazumder, Wageesha Senaratne, Ying Wei
  • Publication number: 20150329415
    Abstract: Surface modification layers (30) and associated heat treatments, that may be provided on a sheet (20), a carrier (10), or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Application
    Filed: December 13, 2013
    Publication date: November 19, 2015
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder
  • Publication number: 20150306847
    Abstract: A method of forming an article from a glass sheet (20) having a glass-sheet bonding surface (24) and a glass carrier (10) having a carrier bonding surface (14). At least one of the glass sheet and carrier bonding surfaces is coated with a surface modification layer (30), and then the glass sheet is connected with the carrier via the surface modification layer. From the perimeter of the glass sheet and the carrier while connected, there is removed a portion of the surface modification layer so as to expose a portion (19, 29) of the bonding surface on each of the glass sheet and the carrier. The glass sheet and carrier are then heated at a temperature ?400° C. so as to bond the perimeter of the glass sheet (26) with the perimeter of the carrier (16).
    Type: Application
    Filed: December 13, 2013
    Publication date: October 29, 2015
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder
  • Publication number: 20150174625
    Abstract: A textured article that includes a transparent substrate having at least one primary surface and a glass, glass-ceramic or ceramic composition; a micro-textured surface on the primary surface of the substrate, the micro-textured surface comprising a plurality of hillocks; and a nano-structured surface on the micro-textured surface, the nano-structured surface comprising a plurality of nano-sized protrusions or a multilayer coating comprising a plurality of layers having a nano-scale thickness. Further, the hillocks have an average height of about 10 to about 1000 nm and an average longest lateral cross-sectional dimension of about 1 to about 100 ?m, and the nano-sized protrusions have an average height of about 10 to about 500 nm and an average longest lateral cross-sectional dimension of about 10 to about 500 nm. The substrate may be chemically strengthened with a compressive stress greater than about 500 MPa and a compressive depth-of-layer greater than about 15 ?m.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 25, 2015
    Inventors: Shandon Dee Hart, Karl William Koch, III, Domenico Tulli, Prantik Mazumder, Valerio Pruneri, Paul Arthur Sachenik, Lili Tian, Johann Osmond, Albert Carrilero
  • Patent number: 9023457
    Abstract: Described herein are various methods for making textured articles, textured articles that have improved fingerprint resistance, and methods of using the textured articles. The methods generally make use of masks comprising nanostructured metal-containing features to produce textured surfaces that also comprise nanostructured features. These nanostructured features in the textured surfaces can render the surfaces hydrophobic and oleophobic, thereby beneficially providing the articles with improved fingerprint resistance relative to similar or identical articles that lack the texturing.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 5, 2015
    Assignee: Corning Incorporated
    Inventors: Albert Carrilero, Prantik Mazumder, Johann Osmond, Valerio Pruneri, Paul Arthur Sachenik, Lili Tian
  • Publication number: 20150099110
    Abstract: Surface modification layers and associated heat treatments, that may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 9, 2015
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder
  • Publication number: 20140220327
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. In one or more embodiments, the interface exhibits an effective adhesion energy of about less than about 4 J/m2. In some embodiments, the interface is modified by the inclusion of a crack mitigating layer containing an inorganic material between the glass substrate and the film.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Kaveh Adib, Robert Alan Bellman, Shandon Dee Hart, Guangli Hu, Robert George Manley, Prantik Mazumder, Chandan Kumar Saha
  • Patent number: 8795812
    Abstract: A glass substrate having an oleophobic surface. The surface is substantially free of features that form a reentrant geometry and includes a plurality of gas-trapping features extending from the surface to a depth below the surface and a coating comprising at least one of a fluoropolymer and a fluorosilane. The gas-trapping features are substantially isolated from each other, and trap gas below droplets to prevent wetting of the surface.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventor: Prantik Mazumder
  • Patent number: 8796687
    Abstract: A method of treating a sheet of semiconducting material comprises forming a sinterable first layer over each major surface of a sheet of semiconducting material, forming a second layer over each of the first layers to form a particle-coated semiconductor sheet, placing the particle-coated sheet between end members, heating the particle-coated sheet to a temperature effective to at least partially sinter the first layer and at least partially melt the semiconducting material, and cooling the particle-coated sheet to solidify the semiconducting material and form a treated sheet of semiconducting material.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventors: Glen Bennett Cook, Prantik Mazumder, Mallanagouda Dyamanagouda Patil, Lili Tian, Natesan Venkataraman
  • Publication number: 20140170378
    Abstract: Surface modification layers and associated heat treatments, that may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Application
    Filed: October 7, 2013
    Publication date: June 19, 2014
    Applicant: Corning Incorporated
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder
  • Publication number: 20140165654
    Abstract: Surface modification layers and associated heat treatments, that may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Application
    Filed: October 7, 2013
    Publication date: June 19, 2014
    Applicant: Corning Incorporated
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder
  • Publication number: 20140166199
    Abstract: Methods for making electronic devices on thin sheets bonded to carriers. A surface modification layer and associated heat treatments, may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier during the electronic device processing. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, during the electronic device processing. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, during the electronic device processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Application
    Filed: October 7, 2013
    Publication date: June 19, 2014
    Applicant: Corning Incorporated
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder
  • Publication number: 20140106141
    Abstract: One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. In one or more embodiments, interface exhibits the effective adhesion energy is about less than about 4 J/m2. In some embodiments, the interface is modified by the inclusion of a crack mitigating layer between the glass substrate and the film.
    Type: Application
    Filed: October 14, 2013
    Publication date: April 17, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Shandon Dee Hart, Robert George Manley, Prantik Mazumder, Charles Andrew Paulson, Chandan Kumar Saha