Patents by Inventor Pravin K. Narwankar

Pravin K. Narwankar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140179110
    Abstract: Methods and apparatus for processing a germanium containing material, a III-V compound containing material, or a II-VI compound containing material disposed on a substrate using a hot wire source are provided herein. In some embodiments, a method for processing a material disposed on a substrate, wherein the material is at least one of a germanium containing material, a III-V compound containing material, or a II-VI compound containing material, includes providing a hydrogen containing gas to a first process chamber having a plurality of filaments; flowing a current through the plurality of filaments to raise a temperature of the plurality of filaments to a first temperature sufficient to decompose at least a portion of the hydrogen containing gas to form hydrogen atoms; and treating a surface of an exposed material on a substrate by exposing the material to hydrogen atoms formed by the decomposition of the hydrogen containing gas.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 26, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JEONGWON PARK, JOE GRIFFITH CRUZ, PRAVIN K. NARWANKAR
  • Publication number: 20140060435
    Abstract: Apparatus for use in an inline substrate processing tool are provided herein. In some embodiments, a door for use in an inline substrate processing tool between a first and a second substrate processing module coupled to one another in a linear arrangement may include a reflective body disposed between two cover plates of substantially transparent material, configured to reflect light and heat energy into each of the at first and second substrate processing modules, wherein the door is selectively movable, via an actuator coupled to the door, between an open position that fluidly couples the first and second substrate processing modules to a closed position that isolates the first substrate processing module from the second substrate processing module.
    Type: Application
    Filed: December 20, 2012
    Publication date: March 6, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DAVID K. CARLSON, MICHAEL R. RICE, KARTIK B. SHAH, KASHIF MAQSOOD, PRAVIN K. NARWANKAR
  • Publication number: 20140060434
    Abstract: Apparatus for use in a substrate processing chamber are provided herein. In some embodiments, a gas injector for use in a process chamber may include first set of gas orifices configured to provide a jet flow of a first process gas into the process chamber, and a second set of gas orifices configured to provide a laminar flow of a second process gas into the process chamber, wherein the first set of gas orifices are disposed between at least two gas orifices of the second set of gas orifices.
    Type: Application
    Filed: December 20, 2012
    Publication date: March 6, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DAVID K. CARLSON, MICHAEL R. RICE, KARTIK B. SHAH, KASHIF MAQSOOD, PRAVIN K. NARWANKAR
  • Publication number: 20140060433
    Abstract: Apparatus for the removal of exhaust gases are provided herein. In some embodiments, an apparatus may include a carrier for supporting one or more substrates in a substrate processing tool, the carrier having a first exhaust outlet, and an exhaust assembly including a first inlet disposed proximate the carrier to receive process exhaust from the first exhaust outlet of the carrier, a second inlet to receive a cleaning gas, and an outlet to remove the process exhaust and the cleaning gas.
    Type: Application
    Filed: December 20, 2012
    Publication date: March 6, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DAVID K. CARLSON, MICHAEL R. RICE, KARTIK B. SHAH, KASHIF MAQSOOD, PRAVIN K. NARWANKAR
  • Patent number: 8642376
    Abstract: Methods for depositing a material atop a substrate are provided herein. In some embodiments, a method of depositing a material atop a substrate may include exposing a substrate to a silicon containing gas and a reducing gas; increasing a flow rate of the silicon containing gas while decreasing a flow rate of the reducing gas to form a first layer; and depositing a second layer atop the first layer.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: February 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Sukti Chatterjee, Annamalai Lakshmanan, Joe Griffith Cruz, Pravin K. Narwankar
  • Patent number: 8603195
    Abstract: Methods and apparatus for forming energy storage devices are provided. In one embodiment a method of producing an energy storage device is provided. The method comprises positioning an anodic current collector into a processing region, depositing one or more three-dimensional electrodes separated by a finite distance on a surface of the anodic current collector such that portions of the surface of the anodic current collector remain exposed, depositing a conformal polymeric layer over the anodic current collector and the one or more three-dimensional electrodes using iCVD techniques comprising flowing a gaseous monomer into the processing region, flowing a gaseous initiator into the processing region through a heated filament to form a reactive gas mixture of the gaseous monomer and the gaseous initiator, wherein the heated filament is heated to a temperature between about 300° C. and about 600° C., and depositing a conformal layer of cathodic material over the conformal polymeric layer.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: December 10, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Victor L. Pushparaj, Pravin K. Narwankar, Omkaram Nalamasu
  • Publication number: 20130243971
    Abstract: Provided are atomic layer deposition apparatus and methods including a gas distribution plate and at least one laser source emitting a laser beam adjacent the gas distribution plate to activate gaseous species from the gas distribution plate. Also provided are gas distribution plates with elongate gas injector ports where the at least one laser beam is directed along the length of the elongate gas injectors.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: Applied Materials, Inc.
    Inventors: David Thompson, Pravin K. Narwankar, Swaminathan Srinivasan, Sukti Chatterjee, Abhilash Mayur, Kashif Maqsood
  • Publication number: 20130228933
    Abstract: An integrated circuit with BEOL interconnects may comprise: a substrate including a semiconductor device; a first layer of dielectric over the surface of the substrate, the first layer of dielectric including a filled via for making electrical contact to the semiconductor device; and a second layer of dielectric on the first layer of dielectric, the second layer of dielectric including a trench running perpendicular to the longitudinal axis of the filled via, the trench being filled with an interconnect line, the interconnect line comprising cross-linked carbon nanotubes and being physically and electrically connected to the filled via. Cross-linked CNTs are grown on catalyst particles on the bottom of the trench using growth conditions including a partial pressure of precursor gas greater than the transition partial pressure at which carbon nanotube growth transitions from a parallel carbon nanotube growth mode to a cross-linked carbon nanotube growth mode.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 5, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Pravin K. Narwankar, Joe Griffith Cruz, Arvind Sundarrajan, Murali Narasimhan, Subbalakshmi Sreekala, Victor Pushparaj
  • Publication number: 20130192524
    Abstract: A processing chamber having a plurality of movable substrate carriers stacked therein for continuously processing a plurality of substrates is provided. The movable substrate carrier is capable of being transported from outside of the processing chamber, e.g., being transferred from a load luck chamber, into the processing chamber and out of the processing chamber, e.g., being transferred into another load luck chamber. Process gases delivered into the processing chamber are spatially separated into a plurality of processing slots, and/or temporally controlled. The processing chamber can be part of a multi-chamber substrate processing system.
    Type: Application
    Filed: January 31, 2013
    Publication date: August 1, 2013
    Inventors: Banqiu Wu, Nag B. Patibandla, Toshiaki Fujita, Ralf Hofmann, Pravin K. Narwankar, Jeonghoon Oh, Srinivas Satya, Li-Qun Xia
  • Publication number: 20130196078
    Abstract: A substrate processing system for processing multiple substrates is provided and generally includes at least one substrate processing platform and at least one substrate staging platform. The substrate processing platform includes a rotary track system capable of supporting multiple substrate support assemblies and continuously rotating the substrate support assemblies, each carrying a substrate thereon. Each substrate is positioned on a substrates support assembly disposed on the rotary track system and being processed through at least one shower head station and at least one buffer station, which are positioned atop the rotary track system of the substrate processing platform. Multiple substrates disposed on the substrate support assemblies are processed in and out the substrate processing platform. The substrate staging platform includes at least one dual-substrate processing station, each dual-substrate processing station includes two substrate support assemblies for supporting two substrates thereon.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 1, 2013
    Inventors: Joseph Yudovsky, Nag B. Patibandla, Pravin K. Narwankar, Li-Qun Xia, Toshiaki Fujita, Ralf Hofmann, Jeonghoon Oh, Srinivas Satya, Banqiu Wu
  • Publication number: 20130192761
    Abstract: A substrate processing system for processing multiple substrates is provided and generally includes at least one processing platform and at least one staging platform. Each substrate is positioned on a substrate carrier disposed on a substrate support assembly. Multiple substrate carriers, each is configured to carry a substrate thereon, are positioned on the surface of the substrate support assembly. The processing platform and the staging platform, each includes a separate substrate support assembly, which can be rotated by a separate rotary track mechanism. Each rotary track mechanism is capable of supporting the substrate support assembly and continuously rotating multiple substrates carried by the substrate carriers and disposed on the substrate support assembly. Each substrate is thus processed through at least one shower head station and at least one buffer station, which are positioned at a distance above the rotary track mechanism of the processing platform.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 1, 2013
    Inventors: Joseph Yudovsky, Ralf Hofmann, Jeonghoon Oh, Li-Qun Xia, Toshiaki Fujita, Pravin K. Narwankar, Nag B, Patibandla, Srinivas Satya, Banqiu Wu
  • Publication number: 20130074771
    Abstract: A method and apparatus are provided for formation of a composite material on a substrate. The composite material includes carbon nanotubes and/or nanofibers, and composite intrinsic and doped silicon structures. In one embodiment, the substrates are in the form of an elongated sheet or web of material, and the apparatus includes supply and take-up rolls to support the web prior to and after formation of the composite materials. The web is guided through various processing chambers to form the composite materials. In another embodiment, the large scale substrates comprise discrete substrates. The discrete substrates are supported on a conveyor system or, alternatively, are handled by robots that route the substrates through the processing chambers to form the composite materials on the substrates. The composite materials are useful in the formation of energy storage devices and/or photovoltaic devices.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Inventors: VICTOR L. PUSHPARAJ, Pravin K. Narwankar, Dieter Haas, Bipin Thakur, Mahesh Arcot, Vikas Gujar, Omkaram Nalamasu
  • Patent number: 8334017
    Abstract: A method and apparatus are provided for formation of a composite material on a substrate. The composite material includes carbon nanotubes and/or nanofibers, and composite intrinsic and doped silicon structures. In one embodiment, the substrates are in the form of an elongated sheet or web of material, and the apparatus includes supply and take-up rolls to support the web prior to and after formation of the composite materials. The web is guided through various processing chambers to form the composite materials. In another embodiment, the large scale substrates comprise discrete substrates. The discrete substrates are supported on a conveyor system or, alternatively, are handled by robots that route the substrates through the processing chambers to form the composite materials on the substrates. The composite materials are useful in the formation of energy storage devices and/or photovoltaic devices.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: December 18, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Victor L. Pushparaj, Pravin K. Narwankar, Dieter Haas, Bipin Thakur, Mahesh Arcot, Vikas Gujar, Omkaram Nalamasu
  • Patent number: 8323754
    Abstract: In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process. In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: December 4, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Olsen, Pravin K. Narwankar, Shreyas S. Kher, Randhir Thakur, Shankar Muthukrishnan, Philip A. Kraus
  • Publication number: 20120295419
    Abstract: Methods for depositing a material atop a substrate are provided herein. In some embodiments, a method of depositing a material atop a substrate may include exposing a substrate to a silicon containing gas and a reducing gas; increasing a flow rate of the silicon containing gas while decreasing a flow rate of the reducing gas to form a first layer; and depositing a second layer atop the first layer.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 22, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: SUKTI CHATTERJEE, ANNAMALAI LAKSHMANAN, JOE GRIFFITH CRUZ, PRAVIN K. NARWANKAR
  • Patent number: 8117987
    Abstract: Methods and apparatus for hot wire chemical vapor deposition (HWCVD) are provided herein. In some embodiments, an inline HWCVD tool may include a linear conveyor for moving a substrate through the linear process tool; and a multiplicity of HWCVD sources, the multiplicity of HWCVD sources being positioned parallel to and spaced apart from the linear conveyor and configured to deposit material on the surface of the substrate as the substrate moves along the linear conveyor; wherein the substrate is coated by the multiplicity of HWCVD sources without breaking vacuum. In some embodiments, methods of coating substrates may include depositing a first material from an HWCVD source on a substrate moving through a first deposition chamber; moving the substrate from the first deposition chamber to a second deposition chamber; and depositing a second material from a second HWCVD source on the substrate moving through the second deposition chamber.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: February 21, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dieter Haas, Pravin K. Narwankar, Randhir P. S. Thakur
  • Patent number: 8119210
    Abstract: In one embodiment, a method for depositing a capping layer on a dielectric layer in a process chamber is provided which includes depositing the dielectric layer on a substrate surface, depositing a silicon-containing layer by an ALD process, comprising alternately pulsing a silicon precursor and an oxidizing gas into the process chamber, and exposing the silicon-containing layer to a nitridation process. In another embodiment, a method for depositing a silicon-containing capping layer on a dielectric layer in a process chamber by an ALD process is provided which includes flowing a silicon precursor into the process chamber, purging the process chamber with a purge gas, flowing an oxidizing gas comprising water formed by flowing a H2 gas and an oxygen-containing gas through a water vapor generator, and purging the process chamber with the purge gas.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: February 21, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Pravin K. Narwankar, Gregg Higashi
  • Publication number: 20110104848
    Abstract: Methods and apparatus for hot wire chemical vapor deposition (HWCVD) are provided herein. In some embodiments, an inline HWCVD tool may include a linear conveyor for moving a substrate through the linear process tool; and a multiplicity of HWCVD sources, the multiplicity of HWCVD sources being positioned parallel to and spaced apart from the linear conveyor and configured to deposit material on the surface of the substrate as the substrate moves along the linear conveyor; wherein the substrate is coated by the multiplicity of HWCVD sources without breaking vacuum. In some embodiments, methods of coating substrates may include depositing a first material from an HWCVD source on a substrate moving through a first deposition chamber; moving the substrate from the first deposition chamber to a second deposition chamber; and depositing a second material from a second HWCVD source on the substrate moving through the second deposition chamber.
    Type: Application
    Filed: August 31, 2010
    Publication date: May 5, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DIETER HAAS, PRAVIN K. NARWANKAR, RANDHIR P.S. THAKUR
  • Publication number: 20110100955
    Abstract: A method and apparatus are provided for formation of a composite material on a substrate. The composite material includes carbon nanotubes and/or nanofibers, and composite intrinsic and doped silicon structures. In one embodiment, the substrates are in the form of an elongated sheet or web of material, and the apparatus includes supply and take-up rolls to support the web prior to and after formation of the composite materials. The web is guided through various processing chambers to form the composite materials. In another embodiment, the large scale substrates comprise discrete substrates. The discrete substrates are supported on a conveyor system or, alternatively, are handled by robots that route the substrates through the processing chambers to form the composite materials on the substrates. The composite materials are useful in the formation of energy storage devices and/or photovoltaic devices.
    Type: Application
    Filed: September 17, 2010
    Publication date: May 5, 2011
    Applicant: Applied Materials, Inc.
    Inventors: VICTOR L. PUSHPARAJ, Pravin K. Narwankar, Dieter Haas, Bipin Thakur, Mahesh Arcot, Vikas Gujar, Omkaram Nalamasu
  • Publication number: 20110045349
    Abstract: Methods and apparatus for forming energy storage devices are provided. In one embodiment a method of producing an energy storage device is provided. The method comprises positioning an anodic current collector into a processing region, depositing one or more three-dimensional electrodes separated by a finite distance on a surface of the anodic current collector such that portions of the surface of the anodic current collector remain exposed, depositing a conformal polymeric layer over the anodic current collector and the one or more three-dimensional electrodes using iCVD techniques comprising flowing a gaseous monomer into the processing region, flowing a gaseous initiator into the processing region through a heated filament to form a reactive gas mixture of the gaseous monomer and the gaseous initiator, wherein the heated filament is heated to a temperature between about 300° C. and about 600° C., and depositing a conformal layer of cathodic material over the conformal polymeric layer.
    Type: Application
    Filed: August 18, 2010
    Publication date: February 24, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Victor L. Pushparaj, Pravin K. Narwankar, Omkaram Nalamasu