Patents by Inventor Purakh Raj Verma

Purakh Raj Verma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240379492
    Abstract: A semiconductor structure with a heat dissipation structure includes a first device wafer includes a front side and a back side. A first transistor is disposed on the front side. The first transistor includes a first gate structure disposed on the front side. Two first source/drain doping regions are embedded within the first device wafer at two side of the first gate structure. A channel region is disposed between the two first source/drain doping regions and embedded within the first device wafer. A first dummy metal structure contacts the back side of the first device wafer, and overlaps the channel region.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Kuo-Yuh Yang, Chia-Huei Lin
  • Patent number: 12132011
    Abstract: An integrated circuit device includes a substrate; an integrated circuit region on the substrate, said integrated circuit region comprising a dielectric stack; a seal ring disposed in said dielectric stack and around a periphery of the integrated circuit region; a trench around the seal ring and exposing a sidewall of the dielectric stack; and a moisture blocking layer continuously covering the integrated circuit region and extending to the sidewall of the dielectric stack, thereby sealing a boundary between two adjacent dielectric films in the dielectric stack.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: October 29, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Kuo-Yuh Yang, Chia-Huei Lin, Chu-Chun Chang
  • Patent number: 12131976
    Abstract: A semiconductor structure with a heat dissipation structure includes a first device wafer includes a front side and a back side. A first transistor is disposed on the front side. The first transistor includes a first gate structure disposed on the front side. Two first source/drain doping regions are embedded within the first device wafer at two side of the first gate structure. A channel region is disposed between the two first source/drain doping regions and embedded within the first device wafer. A first dummy metal structure contacts the back side of the first device wafer, and overlaps the channel region.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 29, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Kuo-Yuh Yang, Chia-Huei Lin
  • Publication number: 20240332201
    Abstract: A semiconductor structure includes following components. A first substrate has a first surface and a second surface opposite to each other. An HBT device is located on the first substrate and includes a collector, a base, and an emitter. A first interconnect structure is electrically connected to the base, located on the first surface, and extends to the second surface. A second interconnect structure is electrically connected to the emitter, located on the first surface, and extends to the second surface. A third interconnect structure is located on the second surface and electrically connected to the collector. An MOS transistor device is located on a second substrate and includes a gate, a first source and drain region, and a second source and drain region. Interconnect structures on the second substrate electrically connect the base to the first source and drain region and electrically connect the emitter to the gate.
    Type: Application
    Filed: June 14, 2024
    Publication date: October 3, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Purakh Raj Verma, Su Xing
  • Patent number: 12087712
    Abstract: A method for fabricating an integrated circuit device is disclosed. A substrate is provided and an integrated circuit area is formed on the substrate. The integrated circuit area includes a dielectric stack. A seal ring is formed in the dielectric stack and around a periphery of the integrated circuit area. A trench is formed around the seal ring and exposing a sidewall of the dielectric stack. The trench is formed within a scribe line. A moisture blocking layer is formed on the sidewall of the dielectric stack, thereby sealing a boundary between two adjacent dielectric films in the dielectric stack.
    Type: Grant
    Filed: March 19, 2023
    Date of Patent: September 10, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Kuo-Yuh Yang, Chia-Huei Lin, Chu-Chun Chang
  • Patent number: 12080622
    Abstract: A semiconductor structure includes a glass substrate and a device structure. The glass substrate includes a glass layer, a heat dissipation layer and a silicon nitride layer stacked from bottom to top. The device structure includes at least one semiconductor device integrated in a device layer situated over the silicon nitride layer of the glass substrate. Or, the glass substrate includes a glass layer and a silicon nitride layer stacked from bottom to top. The device structure includes at least one semiconductor device integrated in a device layer, and a heat dissipation layer is stacked on the device layer, wherein the heat dissipation layer is bonded with the silicon nitride layer of the glass substrate. The present invention also provides a method of wafer bonding for manufacturing said semiconductor structure.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: September 3, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Liang Liao, Purakh Raj Verma, Ching-Yang Wen, Chee Hau Ng
  • Patent number: 12046659
    Abstract: A semiconductor structure includes following components. A first substrate has a first surface and a second surface opposite to each other. An HBT device is located on the first substrate and includes a collector, a base, and an emitter. A first interconnect structure is electrically connected to the base, located on the first surface, and extends to the second surface. A second interconnect structure is electrically connected to the emitter, located on the first surface, and extends to the second surface. A third interconnect structure is located on the second surface and electrically connected to the collector. An MOS transistor device is located on a second substrate and includes a gate, a first source and drain region, and a second source and drain region. Interconnect structures on the second substrate electrically connect the base to the first source and drain region and electrically connect the emitter to the gate.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: July 23, 2024
    Assignee: United Microelectronics Corp.
    Inventors: Purakh Raj Verma, Su Xing
  • Publication number: 20240234350
    Abstract: A semiconductor device includes a first wafer having a deep trench capacitor and a second wafer bonded to the first wafer, in which the second wafer includes a first active device on a first silicon-on-insulator (SOI) substrate and a first metal interconnection connected to the first active device and the deep trench capacitor. The first wafer further includes the deep trench capacitor disposed in a substrate, a first inter-layer dielectric (ILD) layer on the deep trench capacitor, a first inter-metal dielectric (IMD) layer on the first ILD layer, and a second metal interconnection in the first ILD layer and the first IMD layer.
    Type: Application
    Filed: November 17, 2022
    Publication date: July 11, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, XINGXING CHEN
  • Publication number: 20240178137
    Abstract: A method for determining antenna rule for a radio-frequency (RF) device includes the steps of forming a gate structure on a substrate, forming a source/drain region adjacent to the gate structure, forming a first metal routing on the source/drain region, and then forming a second metal routing on the gate structure. Preferably, a sum of an area of the first metal routing and an area of the second metal routing divided by an area of the gate structure is less than a ratio.
    Type: Application
    Filed: February 10, 2023
    Publication date: May 30, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: XINGXING CHEN, Ching-Yang Wen, Purakh Raj Verma
  • Publication number: 20240170490
    Abstract: A semiconductor structure includes a semiconductor on insulator (SOI) substrate, a first electrically conductive structure, and a second electrically conductive structure. The SOI substrate includes a base substrate, a buried insulation layer disposed on the base substrate, a semiconductor layer disposed on the buried insulation layer, and a trap rich layer disposed between the buried insulation layer and the base substrate. At least a part of the first electrically conductive structure and at least a part of the second electrically conductive structure are disposed in the trap rich layer. A part of the trap rich layer is disposed between the first electrically conductive structure and the second electrically conductive structure. The first electrically conductive structure, the second electrically conductive structure, and the trap rich layer disposed between the first electrically conductive structure and the second electrically conductive structure are at least a portion of an anti-fuse structure.
    Type: Application
    Filed: January 29, 2024
    Publication date: May 23, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: BO TAO, Li Wang, Ching-Yang Wen, Purakh Raj Verma, Zhibiao Zhou, Dong Yin, Gang Ren, Jian Xie
  • Publication number: 20240162093
    Abstract: A method for fabricating semiconductor device includes first providing a substrate having a core region, a LNA region, a I/O region, and a PA region, forming a first gate structure on the LNA region, a second gate structure on the PA region, a third gate structure on the core region, and a fourth gate structure on the I/O region, forming an interlayer dielectric (ILD) layer on the first gate structure, the second gate structure, the third gate structure, and the fourth gate structure, and then forming a first hard mask on the first gate structure and a second hard mask on the second gate structure. Preferably, a width of the first hard mask is greater than a width of the first gate structure.
    Type: Application
    Filed: December 13, 2022
    Publication date: May 16, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chu-Chun Chang, Purakh Raj Verma, Chia-Huei Lin, Kuo-Yuh Yang
  • Publication number: 20240136312
    Abstract: A semiconductor device includes a first wafer having a deep trench capacitor and a second wafer bonded to the first wafer, in which the second wafer includes a first active device on a first silicon-on-insulator (SOI) substrate and a first metal interconnection connected to the first active device and the deep trench capacitor. The first wafer further includes the deep trench capacitor disposed in a substrate, a first inter-layer dielectric (ILD) layer on the deep trench capacitor, a first inter-metal dielectric (IMD) layer on the first ILD layer, and a second metal interconnection in the first ILD layer and the first IMD layer.
    Type: Application
    Filed: November 17, 2022
    Publication date: April 25, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, XINGXING CHEN
  • Patent number: 11955292
    Abstract: A structure of capacitors connected in parallel includes a substrate. A trench embedded in the substrate. Numerous electrode layers respectively conformally fill in and cover the trench. The electrode layers are formed of numerous nth electrode layers, wherein n is a positive integer from 1 to M, and M is not less than 3. The nth electrode layer with smaller n is closer to the sidewall of the trench. When n equals to M, the Mth electrode layer fills in the center of the trench, and the top surface of the Mth electrode is aligned with the top surface of the substrate. A capacitor dielectric layer is disposed between the adjacent electrode layers. A first conductive plug contacts the nth electrode layer with odd-numbered n. A second conductive plug contacts the nth electrode layer with even-numbered n.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Xingxing Chen, Chao Jin
  • Patent number: 11929213
    Abstract: A structure of capacitors connected in parallel includes a substrate. A trench embedded in the substrate. Numerous electrode layers respectively conformally fill in and cover the trench. The electrode layers are formed of numerous nth electrode layers, wherein n is a positive integer from 1 to M, and M is not less than 3. The nth electrode layer with smaller n is closer to the sidewall of the trench. When n equals to M, the Mth electrode layer fills in the center of the trench, and the top surface of the Mth electrode is aligned with the top surface of the substrate. A capacitor dielectric layer is disposed between the adjacent electrode layers. A first conductive plug contacts the nth electrode layer with odd-numbered n. A second conductive plug contacts the nth electrode layer with even-numbered n.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: March 12, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Xingxing Chen, Chao Jin
  • Patent number: 11923373
    Abstract: A semiconductor structure includes a semiconductor on insulator (SOI) substrate, a first electrically conductive structure, and a second electrically conductive structure. The SOI substrate includes a base substrate, a buried insulation layer disposed on the base substrate, a semiconductor layer disposed on the buried insulation layer, and a trap rich layer disposed between the buried insulation layer and the base substrate. At least a part of the first electrically conductive structure and at least a part of the second electrically conductive structure are disposed in the trap rich layer. A part of the trap rich layer is disposed between the first electrically conductive structure and the second electrically conductive structure. The first electrically conductive structure, the second electrically conductive structure, and the trap rich layer disposed between the first electrically conductive structure and the second electrically conductive structure are at least a portion of an anti-fuse structure.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: March 5, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Bo Tao, Li Wang, Ching-Yang Wen, Purakh Raj Verma, Zhibiao Zhou, Dong Yin, Gang Ren, Jian Xie
  • Publication number: 20240063282
    Abstract: A semiconductor device includes a substrate having an active area, a first gate line extending along a first direction on the active area, a first gate line extension adjacent to the first gate line and outside the active area, a second gate line extending along the first direction on the active area and adjacent to the first gate line, and a second gate line extension adjacent to the second gate line and outside the active area. Preferably, the active area includes a first indentation and a second indentation, in which the first gate line extension overlaps the first indentation and the second gate line extension overlaps the first indentation.
    Type: Application
    Filed: September 21, 2022
    Publication date: February 22, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Su Xing, JINYU LIAO
  • Publication number: 20240047266
    Abstract: A method of forming a protective layer utilized in a silicon remove process includes bonding a first wafer to a second wafer, wherein the first wafer comprises a first silicon substrate with a first device structure disposed thereon and the second wafer comprises a second silicon substrate with a second device structure disposed thereon. After that, a first trim process is performed to thin laterally an edge of the first wafer and an edge of the second device structure. After the first trim process, a protective layer is formed to cover a back side of the second silicon substrate. After forming the protective layer, a silicon remove process is performed to remove only the first silicon substrate.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 8, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Liang Liao, Chee Hau Ng, Ching-Yang Wen, Purakh Raj Verma
  • Publication number: 20240038832
    Abstract: A semiconductor device includes a substrate, a high-Q capacitor, an ultra high density capacitor, and an interconnection. At least one trench is formed in the substrate. The high-Q capacitor is disposed on a surface of the substrate, and includes a bottom electrode, an upper electrode located on the bottom electrode, and a first dielectric layer located between the upper and bottom electrodes. The ultra high density capacitor is disposed on the trench of the substrate, and includes a first electrode conformally deposited in the trench, a second electrode located on the first electrode, and a second dielectric layer located between the first and second electrodes. The interconnection connects one of the upper electrode and the bottom electrode to one of the first electrode and the second electrode, and connects the other of the upper electrode and the bottom electrode to the other of the first electrode and the second electrode.
    Type: Application
    Filed: August 21, 2022
    Publication date: February 1, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Chee-Hau Ng, Chin-Wei Ho
  • Publication number: 20240038693
    Abstract: A semiconductor structure including chips is provided. The chips are arranged in a stack. Each of the chips includes a radio frequency (RF) device. Two adjacent chips are bonded to each other. The RF devices in the chips are connected in parallel. Each of the RF devices includes a gate, a source region, and a drain region. The gates in the RF devices connected in parallel have the same shape and the same size. The source regions in the RF devices connected in parallel have the same shape and the same size. The drain regions in the RF devices connected in parallel have the same shape and the same size.
    Type: Application
    Filed: October 5, 2023
    Publication date: February 1, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Purakh Raj Verma, Su Xing
  • Patent number: 11881529
    Abstract: A method of fabricating a semiconductor device is provided. First, a semiconductor structure is provided, and the semiconductor structure includes a buried dielectric layer, a first gate structure disposed on a front-side of the buried dielectric layer, and a first source/drain region and a second source/drain region disposed between the buried dielectric layer and the first gate structure. Then, a trench is formed in the buried dielectric layer. Afterwards, a conductive layer is formed on the buried dielectric layer and in the trench. Finally, the conductive layer is patterned.
    Type: Grant
    Filed: September 5, 2022
    Date of Patent: January 23, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Ching-Yang Wen, Li Wang, Kai Cheng