Patents by Inventor Qi Luo

Qi Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11673584
    Abstract: In one embodiment, a computer-implemented method for optimizing a controller of an autonomous driving vehicle (ADV) includes obtaining several samples, each sample having a set of parameters, iteratively performing, until a predetermined condition is satisfied: determining, for each sample, a score according to a configuration of the controller based on the set of parameters of the sample, applying a machine learning model to the samples and corresponding scores to determine a mean function and a variance function, producing a new sample as a minimum of a function of the mean function and the variance function with respect to an input space of the set of parameters, adding the new sample to the several samples, and outputting the new sample as an optimal sample, where parameters of the optimal sample are utilized to configure the controller to autonomously drive the ADV.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: June 13, 2023
    Assignee: BAIDU USA LLC
    Inventors: Yu Wang, Qi Luo, Jiaxuan Xu, Jinyun Zhou, Shu Jiang, Jiaming Tao, Yu Cao, Wei-Man Lin, Kecheng Xu, Jinghao Miao, Jiangtao Hu
  • Publication number: 20230159047
    Abstract: Described herein are a method of training a learning-based critic for tuning a rule-based motion planner of an autonomous driving vehicle, a method of tuning a motion planner using an automatic tuning framework that with the learning-based critic. The method includes receiving training data that incudes human driving trajectories and random trajectories derived from the human driving trajectories; training a learning-based critic using the training data; identifying a set of discrepant trajectories by comparing a first set of trajectories, and a second set of trajectories; and refining, at the neural network training platform, the learning-based critic based on the set of discrepant trajectories. The automatic tuning framework can remove human efforts in tedious parameter tuning, reduce tuning time, while retaining the physical and safety constraints of the ruled-based motion planner.
    Type: Application
    Filed: November 24, 2021
    Publication date: May 25, 2023
    Inventors: Shu JIANG, Zikang XIONG, Weiman LIN, Yu CAO, Qi LUO, Jiangtao HU, Jinghao MIAO
  • Patent number: 11656627
    Abstract: In one embodiment, a method determines a route from a first location of an autonomous driving vehicle (ADV) to a second location within an open space, the first location being a current location of the ADV. The method determines an objective function based on the route, the objective function having a set of costs for maneuvering the ADV from the first location to the second location. The method determines environmental conditions of the open space and uses the environmental conditions to determine a set of weights, each weight to be applied to a corresponding cost of the objective function. The method optimizes the objective function in view of one or more constraints, such that an output of the objective function reaches minimum while the one or more constraints are satisfied and generates a path trajectory with the optimized objective function to control the ADV autonomously according to the path trajectory.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: May 23, 2023
    Assignee: BAIDU USA LLC
    Inventors: Jinyun Zhou, Qi Luo, Shu Jiang, Jiaming Tao, Yu Wang, Jiaxuan Xu, Kecheng Xu, Jinghao Miao, Jiangtao Hu
  • Patent number: 11620903
    Abstract: According to various embodiments, systems, methods, and mediums for operating an autonomous driving vehicles (ADV) are described. The embodiments use a number of machine learning models to extract features individually from audio data and visual data captured by sensors mounted on the ADV, and then to fuse these extracted features to create a concatenated feature vectors. The concatenated feature vector is provided to a multiplayer perceptron (MLP) as input to generate a detection result related to the presence of an emergency vehicle in the surrounding environment. The detection result can be used by the ADV to take appropriate actions to comply with the local traffic rules.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: April 4, 2023
    Assignee: BAIDU USA LLC
    Inventors: Kecheng Xu, Hongyi Sun, Qi Luo, Wei Wang, Zejun Lin, Wesley Reynolds, Feng Liu, Jiangtao Hu, Jinghao Miao
  • Patent number: 11609576
    Abstract: In one embodiment, a process is performed during controlling Autonomous Driving Vehicle (ADV). Microphone signals sense sounds in an environment of the ADV. The microphone signals are combined and filtered to form an audio signal having the sounds sensed in the environment of the ADV. A neural network is applied to the audio signal to detect a presence of an audio signature of an emergency vehicle siren. If the siren is detected, a change in the audio signature to make a determination as to whether the emergency vehicle siren is a) moving towards the ADV, or b) not moving towards the ADV. The ADV can make a driving decision, such as slowing down, stopping, and/or steering to a side, based on if the emergency vehicle siren is moving towards the ADV.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: March 21, 2023
    Assignee: BAIDU USA LLC
    Inventors: Qi Luo, Kecheng Xu, Jinyun Zhou, Xiangquan Xiao, Shuo Huang, Jiangtao Hu, Jinghao Miao
  • Publication number: 20230065284
    Abstract: Systems, methods, and media for factoring localization uncertainty of an ADV into its planning and control process to increase the safety of the ADV. The uncertainty of the localization can be caused by sensor inaccuracy, map matching algorithm inaccuracy, and/or speed uncertainty. The localization uncertainty can have negative impact on trajectory planning and vehicle control. Embodiments described herein are intended to increase the safety of the ADV by considering localization uncertainty in trajectory planning and vehicle control. An exemplary method includes determining a confidence region for an ADV that is automatically driving on a road segment based on localization uncertainty and speed uncertainty; determining that an object is within the confidence region, and a probability of collision with the ADV based on a distance of the object to the ADV; and planning a trajectory based on the probability of collision, and controlling the ADV based on the probability of collision.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 2, 2023
    Inventors: Shu JIANG, Weiman LIN, Yu CAO, Yu WANG, Qi LUO, Jiangtao HU, Jinghao MIAO
  • Publication number: 20230060776
    Abstract: Embodiments of the invention are intended to evaluate the performance of a planning module of the ADV in terms of decision consistency in addition to other metrics, such as comfort, latency, controllability, and safety. In one embodiment, an exemplary method includes receiving, at an autonomous driving simulation platform, a record file recorded by the ADV that was automatically driving on a road segment; simulating operations of a dynamic model of the ADV in the autonomous driving simulation platform during one or more driving scenarios on the road segment based on the record file. The method further includes performing a comparison between each planned trajectory generated by a planning module of the dynamic model after an initial period of time with each trajectory stored in a buffer; and modifying a performance score generated by a planning performance profiler in the autonomous driving simulation platform based on a result of the comparison.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 2, 2023
    Inventors: Shu JIANG, Weiman LIN, Yu CAO, Yu WANG, Qi LUO, Jiangtao HU, Jinghao MIAO
  • Publication number: 20230067822
    Abstract: In one embodiment, an exemplary method includes receiving, at a simulation platform, a record file recorded by a manually-driving ADV on a road segment, the simulation platform including a first encoder, a second encoder, and a performance evaluator; simulating automatic driving operations of a dynamic model of the ADV on the road segment based on the record file, the dynamic model including an autonomous driving module to be evaluated. The method further includes: for each trajectory generated by the autonomous driving module during the simulation: extracting a corresponding trajectory associated with the manually-driving ADV from the record file, encoding the trajectory into a first semantic map and the corresponding trajectory into a second semantic map, and generating a similarity score based on the first semantic map and the second semantic map. The method also includes generating an overall performance score based on each similarity score.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 2, 2023
    Inventors: Shu JIANG, Weiman LIN, Yu CAO, Yu WANG, Kecheng XU, Hongyi SUN, Jiaming TAO, Qi LUO, Jiangtao HU, Jinghao MIAO
  • Patent number: 11586209
    Abstract: In one embodiment, method performed by an autonomous driving vehicle (ADV) that determines, within a driving space, a plurality of routes from a current location of the ADV to a desired location. The method determines, for each route of the plurality of routes, an objective function to control the ADV autonomously along the route and, for each of the objective functions, performs Differential Dynamic Programming (DDP) optimization in view of a set of constraints to produce a path trajectory. The method determines whether at least one of the path trajectories satisfies each constraint and, in response to a path trajectory satisfying each of the constraints, selects the path trajectory for navigating the ADV from the current location to the desired location.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: February 21, 2023
    Assignee: BAIDU USA LLC
    Inventors: Qi Luo, Jinyun Zhou, Shu Jiang, Jiaming Tao, Yu Wang, Jiaxuan Xu, Kecheng Xu, Jinghao Miao, Jiangtao Hu
  • Publication number: 20230053243
    Abstract: One or more outputs from a planning module of an ADV are received. Data of a driving environment of the ADV is received. A performance of the planning module is evaluated by determining a score of the performance of the planning module based on the data of the driving environment and the one or more outputs from the planning module. Whether the one or more outputs from the planning module violates at least one of a set of safety rules is determined. The score is determined being larger than a predetermined threshold in response to determining that the one or more outputs from the planning module violate at least one of the set of safety rules. Otherwise, the score is determined based on a machine learning model. The planning module is modified by tuning a set of parameters of the planning module based on the score.
    Type: Application
    Filed: August 11, 2021
    Publication date: February 16, 2023
    Inventors: WEIMAN LIN, QI LUO, SHU JIANG, YU CAO, YU WANG, JIAMING TAO, KECHENG XU, HONGYI SUN
  • Publication number: 20230046149
    Abstract: According to various embodiments, systems, methods, and media for evaluating an open space planner in an autonomous vehicle are disclosed. In one embodiment, an exemplary method includes receiving, at a profiling application, a record file recorded by the ADV while driving in an open space using the open space planner, and a configuration file specifying parameters of the ADV; extracting planning messages and prediction messages from the record file, each extracted message being associated with the open space planner. The method further includes generating features from the planning message and the prediction messages in view of the specified parameters of the ADV; and calculating statistical metrics from the features. The statistical metrics are then provided to an automatic tuning framework for tuning the open space planner.
    Type: Application
    Filed: August 10, 2021
    Publication date: February 16, 2023
    Inventors: Shu JIANG, Qi LUO, Yu CAO, Weiman LIN, Yu WANG, Hongyi SUN
  • Patent number: 11577758
    Abstract: In one embodiment, when an autonomous driving vehicle (ADV) is parked, the ADV can determine, based on criteria, whether to operate in an open-space mode or an on-lane mode. The criteria can include whether the ADV is within a threshold distance and threshold heading relative to a vehicle lane. If the criteria are not satisfied, then the ADV can enter the open-space mode. While in the open-space mode, the ADV can maneuver it is within the threshold distance and the threshold heading relative to the vehicle lane. In response to the criteria being satisfied, the ADV can enter and operate in the on-lane mode for the ADV to resume along the vehicle lane.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: February 14, 2023
    Assignee: BAIDU USA LLC
    Inventors: Shu Jiang, Jiaming Tao, Jinyun Zhou, Qi Luo, Jinghao Miao, Jiangtao Hu, Jiaxuan Xu, Yu Wang
  • Publication number: 20230042001
    Abstract: In one embodiment, an exemplary method includes the operations of receiving, at a profiling application, a record file recorded by the ADV for a driving scenario in an area, and a high definition map matching the area; extracting planning messages and perception messages from the record file; and aligning the planning message and the perception messages based on their timestamps. The method further includes calculating an individual performance score for each planning cycle of the ADV for the driving scenario based on the planning messages; calculating a weight for each planning cycle based on the perception messages and the high definition map; and then calculating a weighted score for the driving scenario based on individual performance scores and their corresponding weights.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 9, 2023
    Inventors: Shu JIANG, Qi LUO, Yu CAO, Weiman LIN
  • Patent number: 11560159
    Abstract: In one embodiment, a plurality of obstacles is sensed in an environment of an automated driving vehicle (ADV). One or more representations are formed to represent corresponding groupings of the plurality of obstacles. A vehicle route is determined in view of the one or more representations, rather than each and every one of the obstacles individually.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: January 24, 2023
    Assignee: BAIDU USA LLC
    Inventors: Jiaming Tao, Qi Luo, Jinyun Zhou, Kecheng Xu, Yu Wang, Shu Jiang, Jiangtao Hu, Jinghao Miao
  • Patent number: 11520335
    Abstract: An ADV may determine whether there is preexisting map data for an environment or geographical area/location where the ADV is located/travelling. If there is no preexisting data, the ADV may generate map data based on sensor data obtained from one or more sensors of the ADV. The ADV may determine a path for the ADV based on the generated map data. If there is preexisting map data, the ADV may determine a path for the ADV based on the preexisting map data.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: December 6, 2022
    Assignee: BAIDU USA LLC
    Inventors: Dong Li, Yifei Jiang, Liangliang Zhang, Jiaming Tao, Qi Luo, Jiangtao Hu
  • Patent number: 11518404
    Abstract: In one embodiment, static-state curvature error compensation control logic for autonomous driving vehicles (ADV) receives planning and control data associated with the ADV, including a planned steering angle and a planned speed. A steering command is generated based on a current steering angle and the planned steering angle of the ADV. A throttle command is generated based on the planned speed in view of a current speed of the ADV. A curvature error is calculated based on a difference between the current steering angle and the planned steering angle. The steering command is issued to the ADV while withholding the throttle command, in response to determining that the curvature error is greater than a predetermined curvature threshold, such that the steering angle of the ADV is adjusted in view of the planned steering angle without acceleration.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: December 6, 2022
    Assignee: BAIDU USA LLC
    Inventors: Yu Wang, Qi Luo, Jinyun Zhou, Shu Jiang, Jiaxuan Xu, Jinghao Miao, Jiangtao Hu
  • Patent number: 11511760
    Abstract: Systems and methods are disclosed for collecting driving data from simulated autonomous driving vehicle (ADV) driving sessions and real-world ADV driving sessions. The driving data is processed to exclude manual (human) driving data and to exclude data corresponding to the ADV being stationary (not driving). Data can further be filtered based on driving direction: forward or reverse driving. Driving data records are time stamped. The driving data can be aligned according to the timestamp, then a standardized set of metrics is generated from the collected, filtered, and time-aligned data. The standardized set of metrics are used to grade the performance the control system of the ADV, and to generate an updated ADV controller, based on the standardized set of metrics.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: November 29, 2022
    Assignees: BAIDU USA LLC, BAIDU.COM TIMES TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Yu Wang, Qi Luo, Yu Cao, Zongbao Feng, Longtao Lin, Xiangquan Xiao, Jinghao Miao, Jiangtao Hu, Jingao Wang, Shu Jiang, Jinyun Zhou, Jiaxuan Xu
  • Patent number: 11493926
    Abstract: In one embodiment, a system generates a plurality of driving scenarios to train a reinforcement learning (RL) agent and replays each of the driving scenarios to train the RL agent by: applying a RL algorithm to an initial state of a driving scenario to determine a number of control actions from a number of discretized control/action options for the ADV to advance to a number of trajectory states which are based on a number of discretized trajectory state options, determining a reward prediction by the RL algorithm for each of the controls/actions, determining a judgment score for the trajectory states, and updating the RL agent based on the judgment score.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: November 8, 2022
    Assignee: BAIDU USA LLC
    Inventors: Runxin He, Jinyun Zhou, Qi Luo, Shiyu Song, Jinghao Miao, Jiangtao Hu, Yu Wang, Jiaxuan Xu, Shu Jiang
  • Patent number: 11492008
    Abstract: Systems and methods are disclosed for reducing second order dynamics delays in a control subsystem (e.g. throttle, braking, or steering) in an autonomous driving vehicle (ADV). A control input is received from an ADV perception and planning system. The control input is translated in a control command to a control subsystem of the ADV. A reference actuation output is obtained from a storage of the ADV. The reference actuation output is a smoothed output that accounts for second order actuation dynamic delays attributable to the control subsystem actuator. Based on a difference between the control input and the reference actuation output, adaptive gains are determined and applied to the input control signal to reduce error between the control output and the reference actuation output.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: November 8, 2022
    Assignee: BAIDU USA LLC
    Inventors: Yu Wang, Qi Luo, Shu Jiang, Jinghao Miao, Jiangtao Hu, Jingao Wang, Jinyun Zhou, Jiaxuan Xu
  • Patent number: 11485353
    Abstract: In one embodiment, a computer-implemented method of autonomously parking an autonomous driving vehicle, includes generating environment descriptor data describing a driving environment surrounding the autonomous driving vehicle (ADV), including identifying a parking space and one or more obstacles within a predetermined proximity of the ADV, generating a parking trajectory of the ADV based on the environment descriptor data to autonomously park the ADV into the parking space, including optimizing the parking trajectory in view of the one or more obstacles, segmenting the parking trajectory into one or more trajectory segments based on a vehicle state of the ADV, and controlling the ADV according to the one or more trajectory segments of the parking trajectory to autonomously park the ADV into the parking space without collision with the one or more obstacles.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: November 1, 2022
    Assignee: BAIDU USA LLC
    Inventors: Jinyun Zhou, Runxin He, Qi Luo, Jinghao Miao, Jiangtao Hu, Yu Wang, Jiaxuan Xu, Shu Jiang