Patents by Inventor Qi Xiang

Qi Xiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6902966
    Abstract: A method of manufacturing a MOSFET semiconductor device comprises forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate; forming source/drain extensions in the substrate; forming first and second sidewall spacers; implanting dopants within the substrate to form source/drain regions in the substrate adjacent to the sidewalls spacers; laser thermal annealing to activate the source/drain regions; depositing a layer of nickel over the source/drain regions; and annealing to form a nickel silicide layer disposed on the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. The annealing is at temperatures from about 350 to 500° C.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: June 7, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bin Yu, Robert B. Ogle, Eric N. Paton, Cyrus E. Tabery, Qi Xiang
  • Patent number: 6900143
    Abstract: The thermal conductivity of strained silicon MOSFETs and strained silicon SOI MOSFETs is improved by providing a silicon germanium carbide thermal dissipation layer beneath a silicon germanium layer on which strained silicon is grown. The silicon germanium carbide thermal dissipation layer has a higher thermal conductivity than silicon germanium, thus providing more efficient removal of thermal energy generated in active regions.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: May 31, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James N. Pan, Jung-Suk Goo, Qi Xiang
  • Patent number: 6897122
    Abstract: The present invention enables the production of improved high-speed semiconductor devices. The present invention provides the higher speed offered by strained silicon technology coupled with the smaller overall device size provided by shallow trench isolation technology without relaxation of the portion of the strained silicon layer adjacent to a shallow trench isolation region by laterally extending a shallow trench isolation into the strained silicon layer overlying a silicon germanium layer.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: May 24, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Qi Xiang
  • Patent number: 6893929
    Abstract: The formation of shallow trench isolations in a strained silicon MOSFET includes implantation of a dopant into overhang portions of the strained silicon layer and silicon germanium layer at the edges of trenches in which shallow trench isolations are to be formed. The conductivity type of the dopant is chosen to be opposite the conductivity type of the source and drain dopants. The implanted dopant increases the threshold voltage Vt beneath the ends of the gate in overhang portions of the strained silicon layer so that it is approximately equal to or greater than that of the remainder of the MOSFET. The resulting strained silicon MOSFET exhibits reduced leakage current beneath the ends of the gate.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: May 17, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Ming Ren Lin, Minh V. Ngo, Haihong Wang
  • Publication number: 20050101147
    Abstract: According to one exemplary embodiment, a method for forming a field-effect transistor on a substrate, where the substrate includes a high-k dielectric layer situated over the substrate and a gate electrode layer situated over the high-k dielectric layer, comprises a step of etching the gate electrode layer and the high-k dielectric layer to form a gate stack, where the gate stack comprises a high-k dielectric segment situated over the substrate and a gate electrode segment situated over the high-k dielectric segment. According to this exemplary embodiment, the method further comprises performing a nitridation process on the gate stack. The nitridation process can be performed by, for example, utilizing a plasma to nitridate sidewalls of the gate stack, where the plasma comprises nitrogen. The nitridation process can cause nitrogen to enter the high-k dielectric segment and form an oxygen diffusion barrier in the high-k dielectric segment, for example.
    Type: Application
    Filed: November 8, 2003
    Publication date: May 12, 2005
    Inventors: Catherine Labelle, Boon-Yong Ang, Joong Jeon, Allison Holbrook, Qi Xiang, Huicai Zhong
  • Publication number: 20050095807
    Abstract: A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is formed in a selective epitaxial growth (SEG) process. The SEG process can be a CVD or MBE process. Capping layers can be used above the strained silicon layer.
    Type: Application
    Filed: January 12, 2004
    Publication date: May 5, 2005
    Inventor: Qi Xiang
  • Patent number: 6878592
    Abstract: A transistor architecture utilizes a raised source and drain region to reduce the adverse affects of germanium on silicide regions. Epitaxial growth can form a silicide region above the source and drain. The protocol can utilize any number of silicidation processes. The protocol allows better silicidation in SMOS devices.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: April 12, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Paul R. Besser, Minh V. Ngo, Qi Xiang, Eric N. Paton
  • Publication number: 20050073022
    Abstract: A shallow trench isolation region formed in a layer of semiconductor material. The shallow trench isolation region includes a trench formed in the layer of semiconductor material, the trench being defined by sidewalls and a bottom; a liner within the trench formed from a high-K material, the liner conforming to the sidewalls and bottom of the trench; and a fill section made from isolating material, and disposed within and conforming to the high-K liner. A method of forming the shallow trench isolation region is also disclosed.
    Type: Application
    Filed: August 18, 2003
    Publication date: April 7, 2005
    Inventors: Olov Karlsson, HaiHong Wang, Bin Yu, Zoran Krivokapic, Qi Xiang
  • Patent number: 6872613
    Abstract: According to one exemplary embodiment, a method for integrating first and second metal layers on a substrate to form a dual metal NMOS gate and PMOS gate comprises depositing a dielectric layer over an NMOS region and a PMOS region of the substrate. The method further comprises depositing the first metal layer over dielectric layer. The method further comprises depositing the second metal layer over the first metal layer. The method further comprises implanting nitrogen in the NMOS region of substrate and converting a first portion of the first metal layer into a metal oxide layer and converting a second portion of the first metal layer into metal nitride layer. The method further comprises forming the NMOS gate and the PMOS gate, where the NMOS gate comprises a segment of metal nitride layer and the PMOS gate comprises a segment of the metal oxide layer.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: March 29, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Huicai Zhong, Jung-Suk Goo, Allison K. Holbrook, Joong S. Jeon, George J. Kluth
  • Patent number: 6867080
    Abstract: A method is provided for eliminating uneven heating of substrate active areas during laser thermal annealing (LTA) due to variations in gate electrode density. Embodiments include adding dummy structures, formed simultaneously with the gate electrodes, to “fill in” the spaces between isolated gate electrodes, such that the spacing between the gate electrodes and the dummy structures is the same as the spacing between the densest array of device structures on the substrate surface. Since the surface features (i.e., the gate electrodes and the dummy structures) appear substantially uniform to the LTA laser, the laser radiation is uniformly absorbed by the substrate, and the substrate surface is evenly heated.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: March 15, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Eric N. Paton, Robert B. Ogle, Cyrus E. Tabery, Qi Xiang, Bin Yu
  • Patent number: 6867428
    Abstract: An n-type strained silicon MOSFET utilizes a strained silicon channel region formed on a silicon germanium substrate. Silicon regions are provided in the silicon geranium layer at opposing sides of the strained silicon channel region, and shallow source and drain extensions are implanted in the silicon regions. By forming the shallow source and drain extensions in silicon regions rather than in silicon germanium, source and drain extension distortions caused by the enhanced diffusion rate of arsenic in silicon germanium are avoided.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: March 15, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Paul R. Besser, Eric N. Paton, Qi Xiang
  • Publication number: 20050054149
    Abstract: According to one exemplary embodiment, a method for integrating first and second metal layers on a substrate to form a dual metal NMOS gate and PMOS gate comprises depositing a dielectric layer over an NMOS region and a PMOS region of the substrate. The method further comprises depositing the first metal layer over dielectric layer. The method further comprises depositing the second metal layer over the first metal layer. The method further comprises implanting nitrogen in the NMOS region of substrate and converting a first portion of the first metal layer into a metal oxide layer and converting a second portion of the first metal layer into metal nitride layer. The method further comprises forming the NMOS gate and the PMOS gate, where the NMOS gate comprises a segment of metal nitride layer and the PMOS gate comprises a segment of the metal oxide layer.
    Type: Application
    Filed: September 4, 2003
    Publication date: March 10, 2005
    Inventors: Qi Xiang, Huicai Zhong, Jung-Suk Goo, Allison Holbrook, Joong Jeon, George Kluth
  • Publication number: 20050054164
    Abstract: Processing is performed during fabrication of a strained silicon NMOS device to create point defects in silicon germanium portions of source regions, and optionally of drain regions, prior to activation of source and drain region dopants. The point defects retard diffusion of the n-type dopants in the silicon germanium material, effectively lengthening the duration of the diffusivity transient region and resulting in lower overall dopant diffusivity during activation.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 10, 2005
    Inventor: Qi Xiang
  • Publication number: 20050048743
    Abstract: A method of forming a channel region for a transistor includes forming a layer of silicon germanium (SiGe) above a substrate, forming an oxide layer above the SiGe layer wherein the oxide layer includes an aperture in a channel area and the aperture is filled with a SiGe feature, depositing a layer having a first thickness above the oxide layer and the SiGe feature, and forming source and drain regions in the layer.
    Type: Application
    Filed: September 3, 2003
    Publication date: March 3, 2005
    Inventors: Ihsan Djomehri, Jung-Suk Goo, Srinath Krishnan, Witold Maszara, James Pan, Qi Xiang
  • Publication number: 20050048727
    Abstract: A method of forming a finFET transistor using a sidewall epitaxial layer includes forming a silicon germanium (SiGe) layer above an oxide layer above a substrate, forming a cap layer above the SiGe layer, removing portions of the SiGe layer and the cap layer to form a feature, forming sidewalls along lateral walls of the feature, and removing the feature.
    Type: Application
    Filed: September 3, 2003
    Publication date: March 3, 2005
    Inventors: Witold Maszara, Jung-Suk Goo, James Pan, Qi Xiang
  • Publication number: 20050040477
    Abstract: According to one exemplary embodiment, a FET which is situated over a substrate, comprises a channel situated in the substrate. The FET further comprises a first gate dielectric situated over the channel, where the first gate dielectric has a first coefficient of thermal expansion. The FET further comprises a first gate electrode situated over the first gate dielectric, where the first gate electrode has a second coefficient of thermal expansion, and where the second coefficient of thermal expansion is different than the first coefficient of thermal expansion so as to cause an increase in carrier mobility in the FET. The second coefficient of thermal expansion may be greater that the first coefficient of thermal expansion, for example. The increase in carrier mobility may be caused by, for example, a tensile strain created in the channel.
    Type: Application
    Filed: August 18, 2003
    Publication date: February 24, 2005
    Inventors: Qi Xiang, Boon-Yong Ang, Jung-Suk Goo
  • Patent number: 6858503
    Abstract: A fabrication system utilizes a protocol for removing germanium from a top surface of a wafer. An exposure to a gas, such as a gas containing the hydrochloric acid can remove germanium from the top surface. The protocol can allow shared equipment to be used in both Flash product fabrication lines and strained silicon (SMOS) fabrication lines. The protocol allows better silicidation in SMOS devices.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: February 22, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Minh V. Ngo, Ming-Ren Lin, Paul R. Besser, Qi Xiang, Eric N. Paton, Jung-Suk Goo
  • Patent number: 6855982
    Abstract: A method of manufacturing an integrated circuit with a strained semiconductor channel region. The method can provide a double gate structure. The gate structure can be provided in and above a trench. The trench can be formed in a compound semiconductor material such as a silicon-germanium material. The strained semiconductor can increase the charge mobility associated with the transistor. A silicon-on-insulator substrate can be used.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: February 15, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, James N. Pan, Ming Ren Lin
  • Patent number: 6852600
    Abstract: A strained silicon MOSFET utilizes a strained silicon layer formed on a silicon geranium layer. Strained silicon and silicon germanium are removed at opposing sides of the gate and are replaced by silicon regions. Deep source and drain regions are implanted in the silicon regions, and the depth of the deep source and drain regions does not extend beyond the depth of the silicon regions. By forming the deep source and drain regions in the silicon regions, detrimental effects of the higher dielectric constant and lower band gap of silicon geranium are reduced.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: February 8, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Haihong Wang, Qi Xiang
  • Patent number: 6849527
    Abstract: The mobility enhancement of a strained silicon layer is augmented through incorporation of carbon into a strained silicon lattice to which strain is also imparted by an underlying silicon germanium layer. The presence of the relatively small carbon atoms effectively increases the spacing within the strained silicon lattice and thus imparts additional strain. This enhancement may be implemented for any MOSFET device including silicon on insulator MOSFETs, and is preferably selectively implemented for the PMOS components of CMOS devices to achieve approximately equal carrier mobility for the PMOS and NMOS devices.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: February 1, 2005
    Assignee: Advanced Micro Devices
    Inventor: Qi Xiang