Patents by Inventor Qi Xiang

Qi Xiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6642590
    Abstract: A semiconductor structure and method for making the same provides a metal gate on a silicon substrate. The gate includes a high dielectric constant on the substrate, and a physical vapor deposited (PVD) layer of amorphous silicon on the high k gate dielectric. A barrier layer is deposited on the PVD amorphous silicon layer. The metal is then formed on the barrier layer. The work function of the metal gate is substantially the same as a polysilicon gate due to the presence of the PVD amorphous silicon layer. The barrier layer prevents interaction between the PVD amorphous silicon layer and the metal, thereby allowing higher temperature subsequent processing while preserving the work function of the gate.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: November 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Paul R. Besser, Qi Xiang, Matthew S. Buynoski
  • Patent number: 6642536
    Abstract: Silicon on insulator technology and strained silicon technology provide semiconductor devices with high performance capabilities. Shallow trench isolation technology provides smaller devices with increased reliability. Bulk silicon technology provides devices requiring deep ion implant capabilities and/or a high degree of thermal management. A semiconductor device including silicon on insulator regions, strained silicon layer, shallow trench isolation structures, and bulk silicon regions is provided on a single semiconductor substrate.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: November 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Akif Sultan
  • Patent number: 6630720
    Abstract: An asymmetric semiconductor device and a method of making a pair of the asymmetric devices. The semiconductor device includes a layer of semiconductor material having a source and a drain, and a dual work function gate disposed on the layer of semiconductor material to define a channel interposed between the source and the drain.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: October 7, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Witold P. Maszara, HaiHong Wang, Qi Xiang
  • Publication number: 20030178689
    Abstract: An asymmetric semiconductor device and a method of making a pair of the asymmetric devices. The semiconductor device includes a layer of semiconductor material having a source and a drain, and a dual work function gate disposed on the layer of semiconductor material to define a channel interposed between the source and the drain.
    Type: Application
    Filed: December 26, 2001
    Publication date: September 25, 2003
    Inventors: Witold P. Maszara, HaiHong Wang, Qi Xiang
  • Patent number: 6624476
    Abstract: A semiconductor-on-insulator (SOI) device includes a buried insulator layer and an overlying semiconductor layer. Portions of the insulator layer are doped with the same dopant material, for example boron, as is in corresponding portions of the overlying surface semiconductor layer. A peak concentration of the dopant material may be located in the insulator material, or may be located in a lower portion of the surface semiconductor layer. The dopant material in the insulator layer may prevent depletion of dopant material from portions of the surface semiconductor layer, such as from channel portions of NMOS transistors.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: September 23, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Simon Siu-Sing Chan, Matthew S. Buynoski, Qi Xiang
  • Patent number: 6602781
    Abstract: A method for implementing a self-aligned metal silicide gate is achieved by confining a metal within a recess overlying a channel and annealing to cause metal and its overlying silicon to interact to form the self-aligned metal silicide gate. A gate dielectric layer formed of oxynitride or a nitride/oxide stack is formed on the bottom and sidewalls of the recess prior to depositing the silicon. The metal is removed except for the portion of the metal in the recess. A planarization step is performed to remove the remaining unreacted silicon by chemical mechanical polishing until no silicon is detected.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: August 5, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Paul R. Besser, Matthew Buynoski, John C. Foster, Paul L. King, Eric N. Paton
  • Patent number: 6600170
    Abstract: Conventional CMOS devices suffer from imbalance because the mobility of holes in the PMOS transistor is less than the mobility of electrons in the NMOS transistor. The use of strained silicon in the channels of CMOS devices further exacerbates the difference in electron and hole mobility, as strained silicon provides a greater increase in electron mobility than hole mobility. However, hole mobility is increased in the SiGe layer underlying the strained silicon layer. Therefore, a more evenly-balanced, high-speed CMOS device is formed by including strained silicon in the NMOS transistor and not in the PMOS transistor of a CMOS device.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: July 29, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Qi Xiang
  • Patent number: 6589866
    Abstract: A semiconductor structure and method for making the same provides a metal gate on a silicon substrate. The gate includes a high dielectric constant on the substrate, and a physical vapor deposited (PVD) layer of amorphous silicon on the high k gate dielectric. The metal is then formed on the PVD amorphous silicon layer. Additional dopants are implanted into the PVD amorphous silicon layer. An annealing process forms silicide in the gate, with a layer of silicon remaining unreacted. The work function of the metal gate is substantially the same as a polysilicon gate due to the presence of the PVD amorphous silicon layer, while the additional doping of the PVD amorphous silicon layer lowers the resistivity of the gate electrode.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: July 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Paul R. Besser, Qi Xiang, Matthew S. Buynoski
  • Patent number: 6586808
    Abstract: A MOSFET and methods of fabrication. The MOSFET includes a gate having a center gate electrode portion being spaced from the layer of semiconductor material by a center gate dielectric. The gate also includes a lateral gate electrode portion adjacent each sidewall of the center gate electrode portion. The lateral gate electrode portions are each spaced from the layer of semiconductor material by a lateral gate dielectric portion.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: July 1, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Witold P. Maszara, HaiHong Wang
  • Patent number: 6583488
    Abstract: A method of isolation of active regions on a silicon-on-insulator semiconductor device, including the steps of: providing a silicon-on-insulator semiconductor wafer having a silicon active layer, a dielectric isolation layer and a silicon substrate, in which the silicon active layer is formed on the dielectric isolation layer and the dielectric isolation layer is formed on the silicon substrate; etching through the silicon active layer to form an isolation trench, the isolation trench defining an active region in the silicon active layer; forming a liner oxide by oxidation of exposed silicon in the isolation trench; and filling the isolation trench with a tensile stress-reducing low density trench isolation material, without thereafter densifying the tensile stress-reducing low density trench isolation material.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: June 24, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Qi Xiang
  • Patent number: 6583012
    Abstract: MOS transistor and CMOS devices comprising a plurality of transistors including in-laid, metal-based gate electrodes of different composition are formed by a process comprising: depositing a first blanket layer of a first metal filling openings in an insulative layer at the bottom of which openings gate insulator layer segments of MOS transistor precursor regions formed in a semiconductor substrate are exposed; selectively forming at least one masking layer segment on the first blanket layer overlying selected ones of the MOS transistor precursor regions; depositing a second blanket layer of a second metal or silicon over the thus-formed structure, and effecting alloying or silicidation reaction between contacting portions of the first and second blanket layers overlying other ones of the MOS transistor precursor regions. Unnecessary layers remaining after alloying or silicidation reaction are then removed by performing planarization processing, e.g., by CMP.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: June 24, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Matthew S. Buynoski, Qi Xiang, Paul R. Besser
  • Patent number: 6562717
    Abstract: A method of manufacturing a semiconductor device includes providing a gate electrode having first and second opposing sidewalls over a substrate having source/drain regions; forming first and second sidewall spacers respectively disposed adjacent the first and second sidewalls; and forming first and second nickel silicide layer respectively disposed on the source/drain regions and the gate electrode. The nickel silicide layer over the gate electrode can be thicker than the nickel silicide layer over the source/drain regions. A semiconductor device formed from the method is also disclosed.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: May 13, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christy Mei-Chu Woo, George Jonathan Kluth, Qi Xiang
  • Patent number: 6562718
    Abstract: A method of forming a fully silicidized gate of a semiconductor device includes forming silicide in active regions and a portion of a gate. A shield layer is blanket deposited over the device. The top surface of the gate electrode is then exposed. A refractory metal layer is deposited and annealing is performed to cause the metal to react with the gate and fully silicidize the gate, with the shield layer protecting the active regions of the device from further silicidization to thereby prevent spiking and current leakage in the active regions.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: May 13, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Ercan Adem, Jacques J. Bertrand, Paul R. Besser, Matthew S. Buynoski, John C. Foster, Paul L. King, George J. Kluth, Minh V. Ngo, Eric N. Paton, Christy Mei-Chu Woo
  • Publication number: 20030082880
    Abstract: A method of manufacturing a MOSFET semiconductor device comprises forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate; forming source/drain extensions in the substrate; forming first and second sidewall spacers; implanting dopants within the substrate to form source/drain regions in the substrate adjacent to the sidewalls spacers; laser thermal annealing to activate the source/drain regions; depositing a layer of nickel over the source/drain regions; and annealing to form a nickel silicide layer disposed on the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. The annealing is at temperatures from about 350 to 500° C.
    Type: Application
    Filed: October 25, 2001
    Publication date: May 1, 2003
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Bin Yu, Robert B. Ogle, Eric N. Paton, Cyrus E. Tabery, Qi Xiang
  • Patent number: 6555453
    Abstract: Semiconductor devices having fully metal silicided gate electrodes, and methods for making the same, are disclosed. The devices have shallow S/D extensions with depths of less than about 500 Å. The methods for making the subject semiconductor devices employ diffusion of dopant from metal suicides to form shallow S/D extensions, followed by high energy implantation and activation, and metal silicidation to form S/D junctions having metal silicide connect regions and a fully metal silicided electrode.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: April 29, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Christy Mei-Chu Woo, George J. Kluth
  • Patent number: 6555879
    Abstract: A MOSFET and method of fabrication. The MOSFET includes a metal containing source and a metal containing drain; a semiconductor body having a thickness of less than about 15 nm disposed between the source and the drain and on top of an insulating layer, the insulating layer formed on a substrate; a gate electrode disposed over the body and defining a channel interposed between the source and the drain; and a gate dielectric made from a high-K material and separating the gate electrode and the body.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: April 29, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Zoran Krivokapic, Qi Xiang, Bin Yu
  • Patent number: 6555439
    Abstract: A method of manufacturing a MOSFET semiconductor device includes forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate, forming source/drain extensions in the substrate, and forming first and second sidewall spacers. Dopants are then implanted within the substrate to form amorphitized source/drain regions in the substrate adjacent to the sidewalls spacers. The amorphitized source/drain regions are partially recrystallized, and laser thermal annealing activates the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. Also, the recrystallization reduces the amorphitized source/drain regions by a depth of about 20 to 100 angstroms. A semiconductor device is also disclosed.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: April 29, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Robert B. Ogle, Eric N. Paton, Cyrus E. Tabery, Bin Yu
  • Patent number: 6551888
    Abstract: A method of manufacturing a semiconductor device includes forming a gate electrode over a substrate, introducing dopants into the substrate, forming a tuning layer over at least a portion of the substrate, and activating the dopants using laser thermal annealing. The tuning layer causes an increase or a decrease in the amount of fluence absorbed by the portion of substrate below the tuning layer in comparison to an amount of fluence absorbed by a portion of substrate not covered by the tuning layer. Additional tuning layers can also be formed over the substrate.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: April 22, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Cyrus E. Tabery, Eric N. Paton, Bin Yu, Qi Xiang, Robert B. Ogle
  • Publication number: 20030071290
    Abstract: A semiconductor device and method of manufacture. A liner composed of a high-K material having a relative permittivity of greater than 10 is formed adjacent at least the sidewalls of a gate. Sidewall spacers are formed adjacent the gate and spaced apart from the gate by the liner. The liner can be removed using an etch process that has substantially no reaction with a gate dielectric of the gate.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 17, 2003
    Inventors: Bin Yu, Qi Xiang, HaiHong Wang
  • Patent number: 6544872
    Abstract: Deleterious roughness of metal silicide/doped Si interfaces arising during conventional salicide processing for forming shallow-depth source and drain junction regions of MOS transistors and/or CMOS devices is avoided, or at least substantially reduced, by increasing the dopant implantation energy to position the maximum source/drain dopant concentration depth below rather than above the depth to which silicidation reaction occurs, thereby minimizing the concentration of dopant in the metal silicide. The invention enjoys particular utility in forming NiSi layers on As-doped Si substrates.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: April 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Matthew S. Buynoski, Qi Xiang, George Jonathan Kluth